
114GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Abstract—Virtualization is a key technology in cloud
computing to render on-demand provisioning of virtual services.
Xen, an open source paravirtualized virtual machine monitor
(hypervisor), has been adopted by many leading data centers
of the world today. A scheduler in Xen handles CPU resources
sharing among virtual machines hosted on the same physical
system. This study is focused on a scheduler in the current
Xen release - the Credit scheduler. Credit uses two parameters
(weight and cap) to fine tune CPU resources sharing. Previous
studies have shown that these two parameters can impact various
performance measures of virtual machines hosted on Xen. In this
study, we present a holistic procedure to establish performance
models of virtual machines. Empirical data of two commonly used
measures, namely calculation power and network throughput,
were collected by simulations under various settings of weight
and cap. We then employed a powerful machine learning tool
(multi-kernel support vector regression) to learn performance
models from the empirical data. These models were evaluated
satisfactorily by using established procedures in machine
learning.

1.	 Introduction

Cloud computing utilizes a pool of virtualized computer
resources to offer enterprises on-demand computing facilities.
Many Fortune 500 companies are already using the technology
or actively researching it. Virtualized computer resources can
range from a high level software resource such as salesforce.
com to a low level infrastructure resource such as Amazon’s
EC2.

It is no doubt that virtualization is a key technology
in cloud computing to render on-demand provisioning of
virtual services. Infrastructure as a service (IaaS) includes the
virtualization of compute nodes, storage nodes and network
nodes among other possible virtual computing facilities.
Today’s commodity PCs are shipped with multi-core CPUs,
making the job of hosting several virtual machines (VMs) on a
physical system very viable. Each VM may run in a simplified
environment to serve a single purpose. For example, a database

server and a web server can be provided in two separate
VMs. Using VMs, servers are more easily administered and
their faults can be isolated. Server consolidation can not
only improve service reliability but also increase hardware
utilization rate.

It is known that VMs can offer many advantages to a
business owner. But, the performance of VMs has not been
thoroughly studied. This is partly due to the complexity
involved in an environment hosting VMs, and partly due to
the lack of methodology to model VM performance. Without
a reasonable means to model VM performance, the full power
of VMs and related technologies in cloud computing can not
be unlocked.

Xen [2], an open source paravirtualized virtual machine
monitor (hypervisor), has been adopted by many leading
data centers of the world today. As a thin layer atop the host
machine, Xen exposes the underlying hardware system to
VMs efficiently. Xen manages many resources including
CPU, memory and I/O, and presents them to VMs coherently.
To manage the CPU resources, Xen has provided several CPU
schedulers.

The default scheduler in the current Xen release 3 is
the Credit scheduler, which takes two parameters (weight
and cap) for each domain to fine tune CPU resources sharing.
Previous studies have shown that these two parameters can
impact various performance measures of VMs hosted on Xen
[4, 12]. We would like to push the understanding of these
impacts further in this study.

This study is organized as follows. We first discuss related
work in the next section. This is followed by the materials and
methods section. Section 4 is devoted to our experiment design
such as the test environment and performance simulation
procedures. We then use regression tools in machine learning
to learn performance models from the simulated data. The
results are shown in section 5. We conclude this study with a
few remarks in section 6.

Virtual Machines Performance Modeling with
Support Vector Regressions

Shing H. Doong

ShuTe University
Taiwan 824

tungsh@stu.edu.tw

Chen S. Ouyang

I-Shou University
Taiwan 840

ouyangcs@isu.edu.tw

Chih C. Lai

National University of Kaohsiung,
Taiwan 811

cclai@nuk.edu.tw

Chih H. Wu

National University of Kaohsiung,
Taiwan 811

johnw@nuk.edu.tw

Shie J. Lee

National Sun Yat-Sen University,
Taiwan 804

leesj@mail.ee.nsysu.edu.tw

DOI: 10.5176_2010-2283_1.1.19

115GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

	 The third criterion used to classify CPU
schedulers is based on the time point when a
scheduler reruns the scheduling decision. A
preemptive scheduler re-computes the scheduling
decision when a new client becomes ready to
run. A non-preemptive scheduler reruns the
scheduling decision only when the running client
gives up the CPU [4].

	 The Credit scheduler is a non-preemptive
scheduler. It supports the PS mechanism through
the weight parameter, and the WC-mode and
NWC-mode through the cap parameter [4].
Each domain including the host domain receives
a default weight of 256 and a default cap of 0.
Legal weights range from 1 to 65535. The cap
parameter fixes the maximum amount of CPU
a domain can consume. The default setting of 0
means there is no upper cap (WC-mode). A cap
of 100 indicates one physical CPU, 50 is half a
CPU, 400 is 4 CPUs, etc.

3.2.	 Support Vector Regressions (SVRs)

	 A support vector regression minimizes the
structural risk composed of empirical error
and model complexity. This is translated into a
convex quadratic programming problem, which
is solved in its Lagrange dual form [10]:

	

Here, C is a regularizing parameter trading off
empirical error with model complexity; e is the
insensitivity measure used in a loss function,

 is a kernel matrix computing
the inner product , and is a
mapping from the input space to a feature space.
Solving the dual problem gives a regression
function as

	 (1)

3.3.	 Multi-kernel SVRs (mkSVRs)

	 To better cope with varying data density (e.g., data
with a mixture distribution), Lanckriet et al. [8]
proposed a semi-definite programming method
to learn the kernel matrix automatically. Instead
of a single kernel, the researchers considered
multiple kernels ’s and their nonnegative linear
combinations:

 	

2. 	Re lated Work

Scheduling, a key concept in operating systems (OSs)
design, has been extended to VM hypervisor. Modern OSs
typically run more processes than the number of physical
CPUs to run them. An OS scheduler coordinates various
computer resources (CPU, memory, I/O, etc.) to support
concurrently running processes. Likewise, a VM hypervisor
schedules various resources to different VMs running on the
same host.

Instead of handling I/O drivers in a hypervisor, the
current release of Xen lets a host domain (Dom0) handle these
driver requests. Based on this observation, Cherkasova et al
[4] posted that the relative CPU resources allocated to Dom0
and Dom1 can have an impact on the performance of Dom1.
By varying the relative weights of Dom0 and Dom1, the
researchers found that performance of a web server running
on Dom1 varied accordingly.

Xu et al. [12] presented a comparative performance
evaluation of application server consolidations in different
configurations of scheduler parameters. The benchmarks
considered include cal (calculation power), netperf (network
throughput), iozone (disk), httperf (web) and sysbench
(database). By varying the Credit parameters of different VMs,
the researchers discovered task performances in VMs varied.

Since Dean and Ghemawat [6] published the seminal
MapReduce paper in 2004, the MapReduce framework has
become a very important technology utilizing seemingly
infinite resources in cloud computing. Many machine learning
tools are being converted to a MapReduce version [5], which
requires two key computing resources, namely calculation
and networking. Therefore, we consider two main goals
(calculation and networking) served by VMs running on a
multi-core system. With a careful design of the simulation
procedure, ‘cal’ and ‘netperf’ performance data will be
collected. These empirical data will be fit by regressions to
form performance models.

3.	 Materials and Methods

3.1.	 CPU Schedulers of Xen

	 CPU scheduling for VMs has borrowed ideas
from process scheduling in OS research. The first
criterion to classify CPU scheduling is the agility
level that a scheduler responds to VM’s CPU
requests. A proportional share (PS) scheduler,
under the assumption of an instantaneous form of
CPU sharing, allocates CPU to VMs in proportion
to the number of shares of each VM. If the sharing
accounting is based on a coarser time granularity,
it becomes a fair share (FS) scheduler [4].

	 The second criterion to classify CPU schedulers
is based on the support of work-conserving
(WC-mode) and/or non work-conserving (NWC-
mode) modes. In the WC-mode, the shares are
merely guarantees, while the shares are caps in
the NWC-mode.

116GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

The objective of mkSVR is to find the best weight
for each kernel so that the structural risk is as
small as possible. Using a dual representation,
this is expressed as a quadratically constrained
quadratic programming (QCQP) problem [9]:

 	

	

The optimal weights can be found
from the dual variables of the optimal solutions,
and the regression function is given by

	 (2)

4.	 Experiment Design

In order to build performance models for VMs hosted
on Xen, we consider a simulation environment similar to the
intended use of VMs. Since our cloud environment is focused
on MapReduce applications, we have selected calculation and
networking to model VMs performance.

Our test bed is a commodity computer with an Intel
Pentium core 2 CPU (E2180); each core runs at the speed
of 2.0 GHz, the RAM size is 2 GB, and the hard disk is an
IDE drive with 160 GB. The host OS is CentOS 5.4, which
runs Xen 3.1.2. Two Fedora Core 11 guest domains have been
created with a RAM size of 256 MB each. One guest domain
(VM1) runs calculation intensive tasks, and the second guest
domain (VM2) runs network intensive tasks. Benchmark tests
are run simultaneously on both VMs.

For the network intensive domain (VM2), we have
selected the standard netperf package1 to measure network
throughput. This VM continuously sends network packets
to a second physical host in the same local area network for
netperf to collect the throughput data. We limit a test period
of 10 seconds for each netperf test. Our network backbone is
a 100 Mb/sec local area network, and netperf reports a typical
test result of tens of Mb/sec. The actual result depends on the
Credit parameters set for this VM.

For the calculation intensive domain (VM1), originally
we selected the industry standard benchmark packages like
unixbench2 and BYTEmark3. These packages can compute
CPU benchmarks like Dhrystone and Whetstone for integer
and floating point operations. Unfortunately, these packages
are too smart to automatically adjust themselves for varying

cap parameter to get a stable report. The end result is we can
not see the impact of cap on VM1. This has forced us to write
our own calculation benchmark test.

We decided to use the Timer and TimerTask classes in
Java to determine how many floating point operations can be
performed within a fixed period, say 10 seconds, in VM1. The
floating point operation is Math.sin(Math.random()). The Java
Timer class faithfully observes the time clock in VM1. When
the fixed period is set to 10 seconds, regardless of the cap
value, the Java program terminates in 10 seconds and reports
how many floating point operations have been performed. The
benchmark result depends on the cap and weight values set for
VM1. For a 10-second run, this is roughly 1 to 8 Mops/sec.

In order to consider the impact of Credit parameters on
VMs performance, we have considered several test cases. For
VM1, we restricted the weight parameter to the values of 256,
512, 768 and 1024. The cap parameter of VM1 was restricted
to the values of 25, 50, 75 and 100. VM2 had the same ranges
of weight and cap as VM1. For Dom0, we considered only
the weight parameter with the same range as VM1. There
was no CPU cap (cap=0) for Dom0. Overall, there were 1024
combinations of weight and cap parameters for two VMs and
Dom0.

Each weight and cap parameter combination was used to
measure the calculation power (‘cal’) of VM1 and the network
throughput (‘netperf’) of VM2. In order to minimize the
performance fluctuation among different runs of benchmark
tests, each ‘cal’ and ‘netperf’ test was run five times with a 10-
second run period each. The ‘cal’ and ‘netperf’ performance
result was the average value from these five runs. Linux
shell scripts have been written to perform these simulations
automatically. At the beginning of a minute, Dom0 sets the
Credit parameters for each domain. The shell program sleeps
5 seconds for the new setting to become effective in each
domain. Then, the shell program on Dom0 starts 5 runs of ‘cal’
test in VM1 and 5 runs of ‘netperf’ test in VM2 at the same
time. A single simulation run for a parameter combination
takes 1 minute to finish. The total simulation time was 1024
minutes.

5.	 Experimental Results

We have collected 1024 simulation data. Each data
consists of a parameters setting (c1, w1, c2, w2, w0), and two
performance measures (‘cal’, ‘netperf’). Here c1 and c2 are
cap values for VM1 and VM2 respectively, and w1, w2 and w0
are weight values for VM1, VM2 and Dom0. Thus, we have
five independent variables and two dependent variables. Our
next step is to model these two dependent variables by the five
independent variables via different regression techniques.

We considered three regression techniques in this study:
multiple linear regression (MLR), support vector regressions
and multi-kernel SVR. For SVRs, we assumed a kernel type
of radial basis function (RBF) . Two g
values (10 and 1) have been used in the study. The SVR with
g =10 is denoted as SVR1 and the other denoted as SVR2.
For all SVR based algorithms in this study, we considered an
e = .01 insensitivity loss function. The regularizing parameter

1 www.netperf.org
2 www.tux.org/pub/tux/benchmarks/System/unixbench
3 www.tux.org/~mayer/linux/bmark.html

117GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Table 2 lists the correlation value of target and predicted
values for the same out-of-sample test runs in Table 1.
Again, mkSVR has predicted values most correlated to the
target values among all four learning algorithms. P-values of
pairwise t-tests show that the improvement of mkSVR over
SVR1, SVR2 and MLR is significant. The ‘netperf’ out-of-
sample tests were observed similarly.

5.2.	 In-Sample Tests and Performance Models

	 After the out-of-sample tests, we conducted
an in-sample test to compare all four learning
algorithms. The in-sample test uses the whole data
set to train a model and the same set (in-sample)
to assess the model. Table 3 shows the results
of in-sample tests for the ‘cal’ model. Again,
mkSVR has an RMSE several orders smaller than
that of the other three algorithms. The optimal

 weights in equation (2) are listed in Table 4.
One can see that RBF kernels and

 did not contribute at all since
their weights were zero. Using these optimal
weights, the Lagrange multipliers and equation
(2), we built a ‘cal’ performance model for VM1.
This model could estimate the calculation power
of VM1, given Credit parameters c1, w1, c2, w2
and w0.

C was 1 for the ‘cal’ measure and 100 for the ‘netperf’ measure.
For mkSVR, we have considered five RBFs with g equal to
100, 10, 1, .1 and .01. Optimal weights will
be determined from a QCQP problem in mkSVR.

In order to minimize the variation of independent
variables, all five independent variables have been scaled to
be between 0 and 1. For the MLR technique, we used Weka
[7] to find the linear combination coefficients; for the SVRs,
we used libSVM [3]; and for the QCQP problem in mkSVR,
we used Mosek [1].

5.1.	O ut-of-Sample Tests

	 Our first assessment of the performance modeling
is concerned with out-of-sample tests. Frequently
in machine learning [11], a data set is split into
a training set and a test set. The training and
test sets do not overlap. One then applies a
learning algorithm (MLR, SVR, mkSVR) to the
training set, and assesses the regression model
on the test set. We used two indices to measure
the performance of a regression model. Let

, be a data point of the test set.
Here is a vector of independent variables and
 is the target value. Assume is the predicted

value for from a regression model. The root
mean square error (RMSE) and correlation (Corr)
value are defined as

	

Here and are respectively the average of
target and predicted values. Based on these
definitions, the smaller (larger) the RMSE (Corr),
the better a learning algorithm has performed.
The data set was randomly split into a training
set (~80%) and a test set (~20%). Ten random
partitions have been created with the actual size
of the training set enclosed by parentheses after a
run number in Table 1. Using the ‘cal’ measure,
the out-of-sample test results are reported in
Tables 1 and 2.

	 The first run has 804 training samples and 220 test
samples. RMSEs of mkSVR, SVR1, SVR2 and
MLR are .171, .238, .271 and .456 respectively.
The other rows are interpreted similarly. Table
1 shows that mkSVR has the smallest RMSE
among all four learning algorithms in each
run. mkSVR also has the smallest average and
standard deviation from these ten runs.

	 Applying a pairwise t-test to the data in Table 1,
we find that differences in RMSE are significant
among four algorithms. The 2-tail p-value for
most pairwise t-tests is smaller than .001 except
the test between SVR1 and SVR2. With a p-value
of .039, the difference of RMSE between SVR1
and SVR2 is still significant.

Table 1. RMSE for the ‘cal’ model.

Run #	 mkSVR	 SVR1	 SVR2	 MLR

1(804)	 .171	 .238	 .271	 .456
2(812)	 .195	 .290	 .272	 .444
3(836)	 .193	 .259	 .298	 .461
4(792)	 .184	 .290	 .268	 .453
5(839)	 .170	 .274	 .261	 .421
6(808)	 .160	 .218	 .256	 .428
7(817)	 .196	 .265	 .307	 .431
8(815)	 .174	 .244	 .286	 .450
9(825)	 .170	 .233	 .263	 .435
10(818)	 .176	 .248	 .279	 .448

Avg	 .1789	 .2559	 .2761	 .4427
Stdev	 .0124	 .0241	 .0165	 .0133

Table 2. Correlation for the ‘cal’ model.

Run #	 mkSVR	 SVR1	 SVR2	 MLR

1(804)	 .997	 .996	 .993	 .980
2(812)	 .997	 .995	 .994	 .983
3(836)	 .997	 .995	 .992	 .979
4(792)	 .997	 .994	 .993	 .980
5(839)	 .997	 .995	 .994	 .983
6(808)	 .998	 .997	 .994	 .984
7(817)	 .997	 .995	 .991	 .982
8(815)	 .997	 .996	 .993	 .982
9(825)	 .998	 .997	 .994	 .983
10(818)	 .997	 .996	 .993	 .982

Avg	 .9972	 .9956	 .9931	 .9818
Stdev	 .0004	 .0010	 .0010	 .0016

118GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

VM2, we can consider a two-objective optimization problem
to maximize these two performance functions simultaneously.
Credit parameters (c1, w1, c2, w2, w0) maximizing these two
functions can be enforced properly in order to get the optimal
results from VM1 and VM2 at the same time.

The environment of VMs hosted on Xen is very
complicated. In this study, we only considered a scenario of
two VMs, and this scenario has created enough demand in
simulations to collect empirical data. If there were three VMs,
we would have to consider parameter combinations of the type
w1, c1, w2, c2, w3, c3, w0. This will no doubt create a much
higher demand in simulations to collect empirical data.

Though this study considered only the Credit CPU
scheduler in Xen, we believe that the general procedure
outlined in the study can be used to include other Xen managed
resources such as memory. The procedure includes (1) design
proper benchmark simulations to collect empirical data; (2)
find performance models from empirical data by regressions.

Acknowledgement

This work was supported by the Ministry of Economic
Affairs (Taiwan) under the grant number 98-EC-17-A-02-S2-
0114 and the National Science Council (Taiwan) under the
contract number NSC98-2410-H-366-001.

References

[1] 	 Andersen, E. and Andersen, A., “The MOSEK interior point
optimization for linear programming: an implementation of the
homogeneous algorithm”, In H. Frenk, C. Roos, T. Terlaky and S.
Zhang (editors), High Performance Optimization, pp. 197-232, Kluwer
Academic Publishers, 2002.

[2] 	 Brahm, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A., “Xen and the art of
virtualization”, In Proceeding of the 19th ACM symposium on operating
systems principles, October 2003.

[3] 	 Chang, C. and Lin, C., LIBSVM: a library for support vector machines,
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[4] 	 Cherkasova, L., Gupta, D., and Vahdat, A., “Comparisons of the three
CPU schedulers in Xen”, Sigmetrics Performance Evaluation Review,
35, 2, September 2007, pp. 42-51.

[5] 	 Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., and Olukotun,
K., Map-Reduce for machine learning on multi-core, http://www-
cs.stanford.edu/~ang/papers/nips06-mapreducemulticore.pdf, 2006.

[6] 	 Dean, J. and Ghemawat, S., “MapReduce: simplified data processing
on large clusters”, Communication of the ACM, 51, 1, January 2008,
pp. 107-113.

[7] 	 Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I., “The Weka data mining software: an update”, SIGKDD
Exploration, 11, 1, 2009.

[8] 	 Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., and Jordan,
M., “Learning the Kernel Matrix with Semidefinite Programming”,
Journal of Machine Learning Research, 5, 2004, pp. 27-72.

[9] 	 Qui, S. and Lane, T., Multiple kernel learning for support vector
regression, Computer Science Department, University of New Mexico,
Technical Report CS-2005-42, 2005.

[10] 	 Scholkopf, B. and Smola, A., Learning with Kernels, MIT Press,
2002.

[11] 	 Witten, I. and Frank, E., Data Mining, Practical Machine Learning
Tools and Techniques, Morgan Kauffman Publishers, 2005.

[12] 	 Xu, X., Shan, P., Wan, J., and Jiang, Y., “Performance evaluation of the
CPU scheduler in Xen”, In Proceeding of International Symposium
On Information Science and Engineering, 2008, pp. 68-72.

The in-sample assessment on ‘netperf’ measure is
reported in Table 5. Again, mkSVR has provided the best
results. Optimal weights of mkSVR for the ‘netperf’ model
are reported in Table 6. A network performance model of VM2
was built from equation (2) using these parameters.

6.	 Conclusion

Virtual machines hosted on Xen are becoming more
popular in cloud computing applications. Using commodity
computers and networking equipments, server consolidation is
no longer restricted to big enterprises only. Small and medium
size businesses can utilize their commodity computers and
Xen to consolidate their application servers.

It has been found that parameters of the Credit scheduler
in Xen can affect the performance of VMs hosted on Xen
[4, 12]. In this study, we push this line of research further by
establishing performance models of VMs. We have presented
a holistic procedure to build the models. This procedure started
with well-designed benchmark simulations to collect empirical
performance data. The simulations should be conducted in an
environment as close as possible to the intended use of VMs.
In this study, we assumed a scenario of two VMs hosted on
Xen with one VM running calculation intensive jobs and the
other VM running network intensive jobs.

After the empirical data has been collected, we employed
regression techniques from machine learning to learn the
performance models. We found that mkSVR has provided the
best results in terms of RMSE and correlation value, and thus
used mkSVR to build our final models.

One simple application of our performance models is in
the area of load balancing VMs hosted on a physical host. For
example, by knowing the performance models of VM1 and

Table 3. In-sample tests for the ‘cal’ model.

	 mkSVR	 SVR1	 SVR2	 MLR

RMSE	 .0098	 .1054	 .2503	 .4359
Corr	 1.0000	 .9993	 .9943	 .9825

Table 6. Weights for mkSVR in ‘netperf’ model.

	 1.942	 2.615	 .443	 0	 0

Table 5. In-sample tests for the ‘netperf’ model.

	 mkSVR	 SVR1	 SVR2	 MLR

RMSE	 .0098	 1.4431	 3.8124	 8.9387
Corr	 1.0000	 .9924	 .9530	 .6471

Table 4. Weights for mkSVR in ‘cal’ model. 

	 .905	 1.693	 2.402	 0	 0

119GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Dr. Ouyang received his Ph.D. in Electric
Engineering from the National Sun Yat-Sen
University in Taiwan. He is an Assistant Professor
at I-Shou University in Taiwan.

Dr. Wu received his Ph.D. in Electric Engineering
from the National Sun Yat-Sen University in
Taiwan. He is an Associate Professor at National
Kaohsiung University in Taiwan.

Dr. Doong received his Ph.D. in Mathematics
from the University of California at Berkeley. He
is an Associate Professor at ShuTe University in
Taiwan.

Dr. Lai received his Ph.D. in Information
Engineering from the National Central University
in Taiwan. He is an Associate Professor at National
Kaohsiung University in Taiwan.

Dr. Lee received his Ph.D. in Computer Science
from the University of North Carolina at Chapel
Hill. He is a Professor at the National Sun Yat-Sen
University in Taiwan.

