
114GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Abstract—Virtualization is a key technology in cloud 
computing to render on-demand provisioning of virtual services. 
Xen, an open source paravirtualized virtual machine monitor 
(hypervisor), has been adopted by many leading data centers 
of the world today. A scheduler in Xen handles CPU resources 
sharing among virtual machines hosted on the same physical 
system. This study is focused on a scheduler in the current 
Xen release - the Credit scheduler. Credit uses two parameters 
(weight and cap) to fine tune CPU resources sharing. Previous 
studies have shown that these two parameters can impact various 
performance measures of virtual machines hosted on Xen. In this 
study, we present a holistic procedure to establish performance 
models of virtual machines. Empirical data of two commonly used 
measures, namely calculation power and network throughput, 
were collected by simulations under various settings of weight 
and cap. We then employed a powerful machine learning tool 
(multi-kernel support vector regression) to learn performance 
models from the empirical data. These models were evaluated 
satisfactorily by using established procedures in machine 
learning. 

1.	 Introduction

Cloud computing utilizes a pool of virtualized computer 
resources to offer enterprises on-demand computing facilities. 
Many Fortune 500 companies are already using the technology 
or actively researching it. Virtualized computer resources can 
range from a high level software resource such as salesforce.
com to a low level infrastructure resource such as Amazon’s 
EC2.

It is no doubt that virtualization is a key technology 
in cloud computing to render on-demand provisioning of 
virtual services. Infrastructure as a service (IaaS) includes the 
virtualization of compute nodes, storage nodes and network 
nodes among other possible virtual computing facilities. 
Today’s commodity PCs are shipped with multi-core CPUs, 
making the job of hosting several virtual machines (VMs) on a 
physical system very viable. Each VM may run in a simplified 
environment to serve a single purpose. For example, a database 

server and a web server can be provided in two separate 
VMs. Using VMs, servers are more easily administered and 
their faults can be isolated. Server consolidation can not 
only improve service reliability but also increase hardware 
utilization rate.

It is known that VMs can offer many advantages to a 
business owner. But, the performance of VMs has not been 
thoroughly studied. This is partly due to the complexity 
involved in an environment hosting VMs, and partly due to 
the lack of methodology to model VM performance. Without 
a reasonable means to model VM performance, the full power 
of VMs and related technologies in cloud computing can not 
be unlocked.

Xen [2], an open source paravirtualized virtual machine 
monitor (hypervisor), has been adopted by many leading 
data centers of the world today. As a thin layer atop the host 
machine, Xen exposes the underlying hardware system to 
VMs efficiently. Xen manages many resources including 
CPU, memory and I/O, and presents them to VMs coherently. 
To manage the CPU resources, Xen has provided several CPU 
schedulers. 

The default scheduler in the current Xen release 3 is 
the Credit scheduler, which takes two parameters (weight 
and cap) for each domain to fine tune CPU resources sharing. 
Previous studies have shown that these two parameters can 
impact various performance measures of VMs hosted on Xen 
[4, 12]. We would like to push the understanding of these 
impacts further in this study. 

This study is organized as follows. We first discuss related 
work in the next section. This is followed by the materials and 
methods section. Section 4 is devoted to our experiment design 
such as the test environment and performance simulation 
procedures. We then use regression tools in machine learning 
to learn performance models from the simulated data. The 
results are shown in section 5. We conclude this study with a 
few remarks in section 6.
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	 The third criterion used to classify CPU  
schedulers is based on the time point when a 
scheduler reruns the scheduling decision. A 
preemptive scheduler re-computes the scheduling 
decision when a new client becomes ready to 
run. A non-preemptive scheduler reruns the 
scheduling decision only when the running client 
gives up the CPU [4].

	 The Credit scheduler is a non-preemptive 
scheduler. It supports the PS mechanism through 
the weight parameter, and the WC-mode and 
NWC-mode through the cap parameter [4]. 
Each domain including the host domain receives 
a default weight of 256 and a default cap of 0. 
Legal weights range from 1 to 65535. The cap 
parameter fixes the maximum amount of CPU 
a domain can consume. The default setting of 0 
means there is no upper cap (WC-mode). A cap 
of 100 indicates one physical CPU, 50 is half a 
CPU, 400 is 4 CPUs, etc. 

3.2.	 Support Vector Regressions (SVRs)

	 A support vector regression minimizes the 
structural risk composed of empirical error 
and model complexity. This is translated into a 
convex quadratic programming problem, which 
is solved in its Lagrange dual form [10]:

	

Here, C is a regularizing parameter trading off 
empirical error with model complexity; e is the 
insensitivity measure used in a loss function, 

 is a kernel matrix computing 
the inner product  , and  is a 
mapping from the input space to a feature space. 
Solving the dual problem gives a regression 
function as

	                     (1)

3.3.	 Multi-kernel SVRs (mkSVRs)

	 To better cope with varying data density (e.g., data 
with a mixture distribution), Lanckriet et al. [8] 
proposed a semi-definite programming method 
to learn the kernel matrix automatically. Instead 
of a single kernel, the researchers considered 
multiple kernels  ’s and their nonnegative linear 
combinations:

 	

2. 	Re lated Work

Scheduling, a key concept in operating systems (OSs) 
design, has been extended to VM hypervisor. Modern OSs 
typically run more processes than the number of physical 
CPUs to run them. An OS scheduler coordinates various 
computer resources (CPU, memory, I/O, etc.) to support 
concurrently running processes. Likewise, a VM hypervisor 
schedules various resources to different VMs running on the 
same host.

Instead of handling I/O drivers in a hypervisor, the 
current release of Xen lets a host domain (Dom0) handle these 
driver requests. Based on this observation, Cherkasova et al 
[4] posted that the relative CPU resources allocated to Dom0 
and Dom1 can have an impact on the performance of Dom1. 
By varying the relative weights of Dom0 and Dom1, the 
researchers found that performance of a web server running 
on Dom1 varied accordingly. 

Xu et al. [12] presented a comparative performance 
evaluation of application server consolidations in different 
configurations of scheduler parameters. The benchmarks 
considered include cal (calculation power), netperf (network 
throughput), iozone (disk), httperf (web) and sysbench 
(database). By varying the Credit parameters of different VMs, 
the researchers discovered task performances in VMs varied.

Since Dean and Ghemawat [6] published the seminal 
MapReduce paper in 2004, the MapReduce framework has 
become a very important technology utilizing seemingly 
infinite resources in cloud computing. Many machine learning 
tools are being converted to a MapReduce version [5], which 
requires two key computing resources, namely calculation 
and networking. Therefore, we consider two main goals 
(calculation and networking) served by VMs running on a 
multi-core system. With a careful design of the simulation 
procedure, ‘cal’ and ‘netperf’ performance data will be 
collected. These empirical data will be fit by regressions to 
form performance models.

3.	 Materials and Methods 

3.1.	 CPU Schedulers of Xen

	 CPU scheduling for VMs has borrowed ideas 
from process scheduling in OS research. The first 
criterion to classify CPU scheduling is the agility 
level that a scheduler responds to VM’s CPU 
requests. A proportional share (PS) scheduler, 
under the assumption of an instantaneous form of 
CPU sharing, allocates CPU to VMs in proportion 
to the number of shares of each VM. If the sharing 
accounting is based on a coarser time granularity, 
it becomes a fair share (FS) scheduler [4].

	 The second criterion to classify CPU schedulers 
is based on the support of work-conserving 
(WC-mode) and/or non work-conserving (NWC-
mode) modes. In the WC-mode, the shares are 
merely guarantees, while the shares are caps in 
the NWC-mode. 
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The objective of mkSVR is to find the best weight 
for each kernel so that the structural risk is as 
small as possible. Using a dual representation, 
this is expressed as a quadratically constrained 
quadratic programming (QCQP) problem [9]:

 	

	

The optimal weights  can be found 
from the dual variables of the optimal solutions, 
and the regression function is given by

	           (2)

4.	 Experiment Design

In order to build performance models for VMs hosted 
on Xen, we consider a simulation environment similar to the 
intended use of VMs. Since our cloud environment is focused 
on MapReduce applications, we have selected calculation and 
networking to model VMs performance.

Our test bed is a commodity computer with an Intel 
Pentium core 2 CPU (E2180); each core runs at the speed 
of 2.0 GHz, the RAM size is 2 GB, and the hard disk is an 
IDE drive with 160 GB. The host OS is CentOS 5.4, which 
runs Xen 3.1.2. Two Fedora Core 11 guest domains have been 
created with a RAM size of 256 MB each. One guest domain 
(VM1) runs calculation intensive tasks, and the second guest 
domain (VM2) runs network intensive tasks. Benchmark tests 
are run simultaneously on both VMs.

For the network intensive domain (VM2), we have 
selected the standard netperf package1 to measure network 
throughput. This VM continuously sends network packets 
to a second physical host in the same local area network for 
netperf to collect the throughput data. We limit a test period 
of 10 seconds for each netperf test. Our network backbone is 
a 100 Mb/sec local area network, and netperf reports a typical 
test result of tens of Mb/sec. The actual result depends on the 
Credit parameters set for this VM.

For the calculation intensive domain (VM1), originally 
we selected the industry standard benchmark packages like 
unixbench2 and BYTEmark3. These packages can compute 
CPU benchmarks like Dhrystone and Whetstone for integer 
and floating point operations. Unfortunately, these packages 
are too smart to automatically adjust themselves for varying 

cap parameter to get a stable report. The end result is we can 
not see the impact of cap on VM1. This has forced us to write 
our own calculation benchmark test.

We decided to use the Timer and TimerTask classes in 
Java to determine how many floating point operations can be 
performed within a fixed period, say 10 seconds, in VM1. The 
floating point operation is Math.sin(Math.random()). The Java 
Timer class faithfully observes the time clock in VM1. When 
the fixed period is set to 10 seconds, regardless of the cap 
value, the Java program terminates in 10 seconds and reports 
how many floating point operations have been performed. The 
benchmark result depends on the cap and weight values set for 
VM1. For a 10-second run, this is roughly 1 to 8 Mops/sec.

In order to consider the impact of Credit parameters on 
VMs performance, we have considered several test cases. For 
VM1, we restricted the weight parameter to the values of 256, 
512, 768 and 1024. The cap parameter of VM1 was restricted 
to the values of 25, 50, 75 and 100. VM2 had the same ranges 
of weight and cap as VM1. For Dom0, we considered only 
the weight parameter with the same range as VM1. There 
was no CPU cap (cap=0) for Dom0. Overall, there were 1024 
combinations of weight and cap parameters for two VMs and 
Dom0.

Each weight and cap parameter combination was used to 
measure the calculation power (‘cal’) of VM1 and the network 
throughput (‘netperf’) of VM2. In order to minimize the 
performance fluctuation among different runs of benchmark 
tests, each ‘cal’ and ‘netperf’ test was run five times with a 10-
second run period each. The ‘cal’ and ‘netperf’ performance 
result was the average value from these five runs. Linux 
shell scripts have been written to perform these simulations 
automatically. At the beginning of a minute, Dom0 sets the 
Credit parameters for each domain. The shell program sleeps 
5 seconds for the new setting to become effective in each 
domain. Then, the shell program on Dom0 starts 5 runs of ‘cal’ 
test in VM1 and 5 runs of ‘netperf’ test in VM2 at the same 
time. A single simulation run for a parameter combination 
takes 1 minute to finish. The total simulation time was 1024 
minutes.

5.	 Experimental Results

We have collected 1024 simulation data. Each data 
consists of a parameters setting (c1, w1, c2, w2, w0), and two 
performance measures (‘cal’, ‘netperf’). Here c1 and c2 are 
cap values for VM1 and VM2 respectively, and w1, w2 and w0 
are weight values for VM1, VM2 and Dom0. Thus, we have 
five independent variables and two dependent variables. Our 
next step is to model these two dependent variables by the five 
independent variables via different regression techniques.

We considered three regression techniques in this study: 
multiple linear regression (MLR), support vector regressions 
and multi-kernel SVR. For SVRs, we assumed a kernel type 
of radial basis function (RBF) . Two g 
values (10 and 1) have been used in the study. The SVR with 
g =10 is denoted as SVR1 and the other denoted as SVR2.  
For all SVR based algorithms in this study, we considered an  
e = .01 insensitivity loss function. The regularizing parameter 

1 www.netperf.org
2 www.tux.org/pub/tux/benchmarks/System/unixbench
3 www.tux.org/~mayer/linux/bmark.html
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Table 2 lists the correlation value of target and predicted 
values for the same out-of-sample test runs in Table 1. 
Again, mkSVR has predicted values most correlated to the 
target values among all four learning algorithms. P-values of 
pairwise t-tests show that the improvement of mkSVR over 
SVR1, SVR2 and MLR is significant. The ‘netperf’ out-of-
sample tests were observed similarly.

5.2.	 In-Sample Tests and Performance Models

	 After the out-of-sample tests, we conducted 
an in-sample test to compare all four learning 
algorithms. The in-sample test uses the whole data 
set to train a model and the same set (in-sample) 
to assess the model. Table 3 shows the results 
of in-sample tests for the ‘cal’ model. Again, 
mkSVR has an RMSE several orders smaller than 
that of the other three algorithms. The optimal 

 weights in equation (2) are listed in Table 4. 
One can see that RBF kernels  and 

 did not contribute at all since 
their weights were zero. Using these optimal 
weights, the Lagrange multipliers and equation 
(2), we built a ‘cal’ performance model for VM1. 
This model could estimate the calculation power 
of VM1, given Credit parameters c1, w1, c2, w2 
and w0.

C was 1 for the ‘cal’ measure and 100 for the ‘netperf’ measure. 
For mkSVR, we have considered five RBFs with g equal to 
100, 10, 1, .1 and .01. Optimal weights  will 
be determined from a QCQP problem in mkSVR.

In order to minimize the variation of independent 
variables, all five independent variables have been scaled to 
be between 0 and 1. For the MLR technique, we used Weka 
[7] to find the linear combination coefficients; for the SVRs, 
we used libSVM [3]; and for the QCQP problem in mkSVR, 
we used Mosek [1].

5.1.	O ut-of-Sample Tests 

	 Our first assessment of the performance modeling 
is concerned with out-of-sample tests. Frequently 
in machine learning [11], a data set is split into 
a training set and a test set. The training and 
test sets do not overlap. One then applies a 
learning algorithm (MLR, SVR, mkSVR) to the 
training set, and assesses the regression model 
on the test set. We used two indices to measure 
the performance of a regression model. Let 

, be a data point of the test set.  
Here  is a vector of independent variables and 
 is the target value. Assume  is the predicted 

value for  from a regression model. The root 
mean square error (RMSE) and correlation (Corr) 
value are defined as

 

 

	

Here  and  are respectively the average of  
target and predicted values. Based on these 
definitions, the smaller (larger) the RMSE (Corr), 
the better a learning algorithm has performed. 
The data set was randomly split into a training 
set (~80%) and a test set (~20%). Ten random 
partitions have been created with the actual size 
of the training set enclosed by parentheses after a 
run number in Table 1. Using the ‘cal’ measure, 
the out-of-sample test results are reported in 
Tables 1 and 2.

	 The first run has 804 training samples and 220 test 
samples. RMSEs of mkSVR, SVR1, SVR2 and 
MLR are .171, .238, .271 and .456 respectively. 
The other rows are interpreted similarly. Table 
1 shows that mkSVR has the smallest RMSE 
among all four learning algorithms in each 
run. mkSVR also has the smallest average and 
standard deviation from these ten runs.

	 Applying a pairwise t-test to the data in Table 1, 
we find that differences in RMSE are significant 
among four algorithms. The 2-tail p-value for 
most pairwise t-tests is smaller than .001 except 
the test between SVR1 and SVR2. With a p-value 
of .039, the difference of RMSE between SVR1 
and SVR2 is still significant.

Table 1. RMSE for the ‘cal’ model.

Run #	 mkSVR	 SVR1	 SVR2	 MLR

1(804)	 .171	 .238	 .271	 .456
2(812)	 .195	 .290	 .272	 .444
3(836)	 .193	 .259	 .298	 .461
4(792)	 .184	 .290	 .268	 .453
5(839)	 .170	 .274	 .261	 .421
6(808)	 .160	 .218	 .256	 .428
7(817)	 .196	 .265	 .307	 .431
8(815)	 .174	 .244	 .286	 .450
9(825)	 .170	 .233	 .263	 .435
10(818)	 .176	 .248	 .279	 .448

Avg	 .1789	 .2559	 .2761	 .4427
Stdev	 .0124	 .0241	 .0165	 .0133

Table 2. Correlation for the ‘cal’ model.

Run #	 mkSVR	 SVR1	 SVR2	 MLR

1(804)	 .997	 .996	 .993	 .980
2(812)	 .997	 .995	 .994	 .983
3(836)	 .997	 .995	 .992	 .979
4(792)	 .997	 .994	 .993	 .980
5(839)	 .997	 .995	 .994	 .983
6(808)	 .998	 .997	 .994	 .984
7(817)	 .997	 .995	 .991	 .982
8(815)	 .997	 .996	 .993	 .982
9(825)	 .998	 .997	 .994	 .983
10(818)	 .997	 .996	 .993	 .982

Avg	 .9972	 .9956	 .9931	 .9818
Stdev	 .0004	 .0010	 .0010	 .0016
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VM2, we can consider a two-objective optimization problem 
to maximize these two performance functions simultaneously. 
Credit parameters (c1, w1, c2, w2, w0) maximizing these two 
functions can be enforced properly in order to get the optimal 
results from VM1 and VM2 at the same time.

The environment of VMs hosted on Xen is very 
complicated. In this study, we only considered a scenario of 
two VMs, and this scenario has created enough demand in 
simulations to collect empirical data. If there were three VMs, 
we would have to consider parameter combinations of the type 
w1, c1, w2, c2, w3, c3, w0. This will no doubt create a much 
higher demand in simulations to collect empirical data. 

Though this study considered only the Credit CPU 
scheduler in Xen, we believe that the general procedure 
outlined in the study can be used to include other Xen managed 
resources such as memory. The procedure includes (1) design 
proper benchmark simulations to collect empirical data; (2) 
find performance models from empirical data by regressions.
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The in-sample assessment on ‘netperf’ measure is 
reported in Table 5. Again, mkSVR has provided the best 
results. Optimal weights of mkSVR for the ‘netperf’ model 
are reported in Table 6. A network performance model of VM2 
was built from equation (2) using these parameters.

6.	 Conclusion

Virtual machines hosted on Xen are becoming more 
popular in cloud computing applications. Using commodity 
computers and networking equipments, server consolidation is 
no longer restricted to big enterprises only. Small and medium 
size businesses can utilize their commodity computers and 
Xen to consolidate their application servers.

It has been found that parameters of the Credit scheduler 
in Xen can affect the performance of VMs hosted on Xen 
[4, 12]. In this study, we push this line of research further by 
establishing performance models of VMs. We have presented 
a holistic procedure to build the models. This procedure started 
with well-designed benchmark simulations to collect empirical 
performance data. The simulations should be conducted in an 
environment as close as possible to the intended use of VMs. 
In this study, we assumed a scenario of two VMs hosted on 
Xen with one VM running calculation intensive jobs and the 
other VM running network intensive jobs.

After the empirical data has been collected, we employed 
regression techniques from machine learning to learn the 
performance models. We found that mkSVR has provided the 
best results in terms of RMSE and correlation value, and thus 
used mkSVR to build our final models.

One simple application of our performance models is in 
the area of load balancing VMs hosted on a physical host. For 
example, by knowing the performance models of VM1 and 

Table 3. In-sample tests for the ‘cal’ model.

	 mkSVR	 SVR1	 SVR2	 MLR

RMSE	 .0098	 .1054	 .2503	 .4359
Corr	 1.0000	 .9993	 .9943	 .9825

Table 6. Weights for mkSVR in ‘netperf’ model.

	 1.942	 2.615	 .443	 0	 0

Table 5. In-sample tests for the ‘netperf’ model.

	 mkSVR	 SVR1	 SVR2	 MLR

RMSE	 .0098	 1.4431	 3.8124	 8.9387
Corr	 1.0000	 .9924	 .9530	 .6471

Table 4. Weights for mkSVR in ‘cal’ model.   

 

	 .905	 1.693	 2.402	 0	 0
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