
30GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Laboratory exercises are an important part of secondary
school physics classes that make an important contribution to
student learning. Virtual laboratories have the advantage of
allowing experiments that might be too dangerous or too costly in
the real world. We present Gary’s Lab, an experimental immersive
3D laboratory environment using computer game technology.
Our system allows students considerable freedom in constructing
apparatus, and running qualitative and quantitative experiments
using that apparatus. We argue that the process of constructing
experiments in interesting contexts might be expected to help
students engage with their lessons, focusing their attention on the
apparatus and the methods of measurement used.

Index Terms—physics education, computer game, virtual
laboratory

1.	 INTRODUCTION

Much has been written about using computer game
technology for teaching. In the words of Stapleton and Taylor
[7] Computer games seem to captivate the imagination and
attention of contemporary teenagers. If only the energy,
motivation, fun and exhilaration they enjoy from playing
games on their PC, or on consoles ... could be captured in
learning physics! Although the potential has long been
appreciated, there has not been the level of success we might
have anticipated. The state of the art in 2004 was carefully
analyzed by Aitkin [1]. He classifies educational games as
‘Data Based’, or ‘Process Based’ and relates the two categories
to the instructivist and constructivist educational philosophies
respectively. Roughly stated, instructivist educators seek to
present information to students, as though their minds are
empty and need filling; constructivists take the view that
students learn by interacting with their environment and
problem solving to extend or change existing knowledge.

Like instructivists, data based games present information
and drill students in using it. The game setting, narrative and
reward system encourage the player to continue, but often bear
little relationship to the educational content. There have been
some noteworthy successes in this genre. Math Blasters[3]
and Where in the World is Carmen San Diego[2] being two of
the best known examples. Math Blasters requires a player to
solve problems in arithmetic in order to progress a space alien
adventure. Answering geography questions allows a player to
find the mysterious hidden Carmen San Diego.

In contrast, Aitken suggests that process based games
have the potential to present environments for learners to
explore and engage in self motivated learning by solving

personally meaningful problems. Such games take the form of
simulations in which players have a wide range of choice as
to their actions and can observe realistic consequences from
those actions. A successful example of a process based game
is SimCity[8]. Here, players control allocation of resources in
the development of a city. The goal of the game is to have the
city grow. The program does not require that this be done in
any particular way. It simulates as realistically as possible the
various physical and economic processes of a city, and leaves
it to the player to work within those constraints. SimCity
has been widely used in classrooms. Sadly, success with
other simulation games is rare. Aitkin reviews a number of
noteworthy failures and concludes that very few digital games
based upon scientific simulations have been made and most of
those that have been made are not enjoyable to play.

What is it about computer games that teenagers so enjoy?
Koster[4] argues that the ‘fun’ is about learning – developing
skills and exercising them. For a game to be fun, skills
required must be at just the right level; challenging, but at such
a level that success is possible. If the challenge is too low,
boredom sets in; too great and players will become frustrated.
A good background story underpins the goals and objectives
of play, letting the player understand what is expected of them.
Modern teenagers are also connoisseurs of game technology,
appreciative of and having high expectations of the computer
graphics and game play. Games that fall short will be quickly
rejected.

It is clear that the task of building a successful computer
game for teaching is not an easy one. Defining success as the
difference between expectation and achievement, the goal of
this paper is to work towards more ‘successful’ educational
computer games in two ways. The first is to suggest and
demonstrate what we consider to be promising ideas for
teaching high school physics. The second is contribute to
reducing the expectation people have of such software.

Our project is called Gary’s Lab. It provides a laboratory
environment for high school physics students, supporting
constructive learning. Both qualitative and quantitative
experiments have are supported. In a laboratory, students can
test the theory they have been given; they learn to use apparatus,
and make measurements; they learn about experimental error.
Most importantly, abstract concepts become tangible, and
they can see that theory will usefully predict experimental
outcomes. There are a wide range of choices to be made in
setting up laboratory experiments. Sometimes an experiment
may be completely pre-built and the student simply asked to
run it and observe results. A better option is for the student to
assemble or even design their own apparatus. Whilst this may

Towards Teaching Secondary School Physics
in an Immersive 3D Game Environment

Bill Rogers, Dacre Denny, Jonathan Stichbury

The University of Waikato, Hamilton, New Zealand
Bill Rogers: coms0108@cs.waikato.ac.nz

DOI: 10.5176_2010-2283_1.1.06

31GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

seem inefficient in use of the students’ time, it actually has value
in drawing their attention to aspects of the equipment that they
might otherwise overlook. It provides a level of engagement
with the task that can only be achieved by spending that time,
and being responsible for as much of the process as possible.
Building apparatus provides students with the possibility
of making mistakes, and also the possibility of trying
alternatives. Our goal in the Gary’s lab project is to provide
a laboratory for teaching which has this ‘building’ aspect. It
is named in recognition of Garry Newman, responsible for
a physics sandbox game called Garry’s Mod[5], written as a
modification for the Source game engine.

In the spirit of reducing expectations, it is firstly not
our goal that the software should ‘teach’ as such. That is the
role of the classroom instructor. The purpose of our software
is to allow students to test their knowledge of physics in
interesting situations. We have not included any assistance
with calculation in the software. We expect that students will
do calculations themselves, using their knowledge of physics
and measurements taken from our simulations. Although
software could easily help in this area, having it do so would
undermine the development of skills expected in our high
school curriculum. Secondly we have no illusions about this
being an ‘addictive’ computer game. We do however hope that
we can build Gary’s Lab to a high enough technical standard
to be acceptable to a modern ‘digital native’ student. Most
importantly we hope to emulate computer games by achieving
a good level of ‘immersion’ for our users. Ideally they will feel
that they are participating in a credible environment, enough
to help them gain intuition and understanding of the way the
physics works – especially of mass, size and speed.

Fig. 1. Abstract Simulation [9].

The idea of using a virtual laboratory is not new. It can
permit experiments that are not practical due to scale, safety or
cost. From the student’s perspective, experiments can be larger
and more dramatic. It is also possible to simplify physics in an
artificial world. For example, it is possible to have genuinely
frictionless surfaces. We have taken great care here though. In
our system it is not possible to bypass simulation and directly
make sure theory always works perfectly, because we require
that experiment variations which a student may choose to do
have realistic outcomes.

There is a good deal of existing software that can be
used to teach aspects of physics. Typically, software that
supports quantitative experiments has largely pre-built setups
and tends to be non immersive and abstract. For example, a
program that allows experimentation with projectile motion

might show equations, allow setting of angle and speed, then
show a roughly animated 2D simulation with numbers rolling
as it proceeds. Fig. 1 shows an example. There are a number
of pieces of software that allow the user to build models, and
then watch their behaviour, subject to the laws of ‘physics’.
Recent examples are “The World of Goo”, “Little Big Planet”
and of course “Garry’s Mod”. Each of these is qualitative. It is
not possible to use them to trial physics equations.

An underlying assumption of the Gary’s Lab project
is that a standard game physics engine will simulate physics
accurately enough to be used for quantitative experiments.
Section II of our paper addresses the issue of physics
calculations. Section III describes the sample laboratories we
have constructed and some of the experiments they permit.
Section IV reflects on the current state of the Gary’s Lab
project.

2.	 PHYSICS SIMULATION

The Gary’s Lab implementation is built using NVidia’s
PhysX engine (originally provided by Ageia)[6]. The physics
engines used in computer games have not been designed for
precise simulation. Rather they are built to operate quickly
and satisfy their analogy to the first law of graphics – “If it
looks ok, it is ok”. In operation, game physics engines may
deviate from real physics in a number of ways.

Firstly, calculations are done in finite time steps, as a
numerical integration. If the time steps are large, this may
generate inaccuracies. Fortunately our system does not
require very high precision. Students typically measure sub-
metre distances to the nearest millimeter and multi-metre
distances to the nearest centimeter; angles to one degree;
speed and acceleration to two or at most three significant
digits. Most experiments involve features, like friction or air
resistance, that are not included in the calculations. As a result
it is uncommon to perform an experiment with uncertainty of
results better than 1%. We have taken this as our goal – to get
physics simulation that is accurate to 1%.

More difficult is the collision system. In a game physics
engine, exact collision calculations are expensive. To avoid
this cost objects are firstly given a simplified ‘physics volume’
for collision calculation. This might be an enclosing sphere,
cube or maybe a convex hull. Such simplified physics models
have proved satisfactory in our experiments. Secondly, the
time of collision is not accurate as a result of the finite step
integration used for movement. Objects jump from step to
step and collision testing is done after each step. In the worst
case, if an object is moving very fast, the distance moved in a
single time step may be such that collision with a small or thin
object may be missed altogether. Usually objects are slightly
overlapped (interpenetrating) when a collision is detected.
Real objects bend or compress on impact. In a game physics
engine, it is possible to simulate deformable objects, but it is
more common to treat objects as though they were completely
rigid, accepting a small level of interpenetration on collision,
and applying a spring force to separate the objects back to
the point of contact. This is not physically accurate, but gives
a reasonable approximation to compression. With complex
shapes, the restoring force may not be applied in quite the
right direction, but with simple cubes, spheres and cylinders

32GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

the results have proved acceptable in our experiments. So long
as movements are not too fast with respect to the sizes of the
objects, our results have been accurate enough.

The final problem we have observed with physics
calculations occurs when several objects are connected to
each other. One example is a rope, simulated as a chain of
hinged segments; another is a number of rigid bars connected
to form a closed shape. Physics engines compute the forces
and motions separately for each rigid component and then
iterate to get consistency between components. Just as with
interpenetration, restoring forces substitute for unresolved
violations of joint constraints. The result can be violent
movement or instability. We have tried to choose parameter
settings to minimize such effects.

Overall, we have been pleased with the accuracy of
simulations. In the same way that real experiments don’t give
perfect results because of uncontrolled variables and over-
simplified physics, our system doesn’t give perfect results, just
for different reasons. The results, however, are close enough.

3.	 PROTOTYPE LABORATORIES

Four prototype laboratory environments have been
constructed, covering different parts of the kinematic syllabus
for the last two years of high school in New Zealand (usually
15 to 17 year old students). The first was Projectile Motion, in
which an object was thrown over a canyon; then Rotational
Motion, where an airplane circled a mountain tethered by an
improbably long rope; Roller, with a large cylinder rolling
down a slope; and Ice where frictionless sleds moved in
various ways. Ice also served as a surface for a number of
rocket propelled devices.

A.	 Projectile Motion

	 The player (student) is standing on one side of a
canyon. Apparatus available is a triangular pivot
base (the fulcrum), a plank, and an anvil. The game
objective is to throw crates across the canyon. The
quantitative physics learning objective is to use the
equations of ballistic motion, to calculate the landing
point of the cube after being thrown. The student
must first assemble a see-saw from the fulcrum and
plank, place the crate to be thrown; and then drop an
anvil onto the seesaw to launch the crate. There is
room here for qualitative experiments – sliding the
plank about on the fulcrum allows test throws with
different leverage. The height and position – from
which the anvil is dropped can also be varied, as can
the position and orientation of the whole apparatus.

	 It is an attractive feature of a simulation world that
the construction process can be used as needed, and
‘magic’ applied at other times to achieve a desired
result. A more elaborate lab setup might have
included some mechanism for raising the anvil, but
we saw that as a distraction from the task on which
we wanted the student to focus. It is useful for them
to build the seesaw, because that draws attention to
position of the plank and provides an opportunity
to vary it. We are also interested in where the anvil
falls. Adding and having the user operate a crane

would not have helped. Instead the anvil simply has
the capability of being raised to a measured height
above the point on the ground at which it was placed.
Students did not comment on this lack of realism
during trials.

Fig. 2. Projectile Motion: Seesaw and crate.

	
	 On launch the simulation is paused to give the student

a chance to calculate the landing point of the crate.
An interesting design problem is to decide on the
best way of returning numerical results to the user.
Gary’s Lab uses two different methods, illustrated
in this experiment. Launch speed and angle for the
crate are reported automatically as shown in fig 3. As
well as the text display, the vector is shown in space
above the crate (white ‘sail’ with red outline). The
vector is animated as the crate flies, to help show the
nature of the motion. Secondly the system includes
measurement tools. In this case a tape measure can
be used to position a marker at the expected landing
zone. It can be seen in fig 3, connecting two giant
map pins. The tape length is shown as bill-boarded
text next to the near pin.

Fig. 3. Tape measure and velocity display

	
	 As projectile motion is particularly simple, involving

no collision detection, aside from the final landing,
the game physics engine has no difficulty in
accurately simulating the motion. Of course, the
virtual world conveniently lacks air resistance, so
the physics model of the game is the same as that of
a high school physics student.

	 In summary, the general pattern of this lab exercise
is to begin with a construction phase and a time for

33GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

qualitative experiments. This is the ‘sandbox’ part of
the experiment. Then a trial is undertaken, for which
the system requires the user to make a quantitative
prediction – in this case placing a target at the
expected landing point. Finally, the system runs its
simulation and reports success or failure to the user.
The simulation provides a nice period of suspense
before the outcome is determined.

	 When Projectile Motion was trialed in a school, the
class teacher decided to run the experiment once
using a data projector and had the students in the
class make individual predictions. The most popular
prediction was entered into the system. Again the
suspense time worked well.

	 Whilst the game style of: build; predict; suspense
and result was attractive, it hasn’t been applied in
all of the other environments. At this stage Gary’s
Lab is not a complete game system, and there are
inconsistencies; it being deemed more valuable to
trial as many experiments as possible. Some are
game styled, and some work in sand box mode.

B.	 Rotational Motion

	 The physics objective here was simply to relate
angular velocity, speed, radius and period. However,
the game aspects of the lab are the most complex of
all the labs yet developed. The setting is of a plane,
tethered to a tower at the top of a hill in the centre
of an island. In fact, the plane begins on the ground.
The player must connect a rope from the plane to the
tower, and then fly the plane up to a cruising height.
They have control of aircraft pitch allowing them to
fly up or down. The game physics controls circular
motion – by the mechanism of the rope connected
to the plane. There is a game play aspect. Once
cruising altitude has been reached the player must
keep the plane level and complete a circuit through
the yellow ‘smoke’ rings. The calculation required is
to determine the plane’s orbital period from its speed
and the length of the rope (measured using the tape
measure).

Fig. 4. Rotational Motion: Flying through rings

	
	 The physics modeling is complex in this exercise.

The rope is built as a hinged line of rigid segments.
It performs well so long as is it kept tight. The rope
segments have some mass, so the rope sags a little.
If the rope is allowed to become slack, and the plane
suddenly stretches it, the physics system’s handling

of the stretched connections tends to apply a sudden
large force to the plane, flicking it through the air. It
doesn’t seem unreasonable for something like that
to happen with the rope suddenly snapping tight.
A real rope would either break or pull the aircraft
apart. Even though this behavior might not be ideal,
it doesn’t lead to the player getting bad numerical
results. If they lose control of the plane they don’t
get any results at all. Their only option is to try
again. Considerable effort also went in to keeping
the aircraft from tumbling at the end of the rope.
To simulate the stabilizing effect of the tail in the
physics model, a small force was applied on each
frame to keep the plane pitched into its direction of
flight.

C.	 Roller

	 In this laboratory, a large cylindrical object rolls
down a slope. The physics task is to predict its
velocity at the base of the slope from knowledge
of its radius and the height of the slope. The user
interface issue was to provide a device for measuring
velocity. After considering radar guns, we settled on
something more visual if less realistic. The idea is
that the two poles with the white rings (see fig. 5)
support a ‘force field’ that measures the velocity of
any object passing through. The result is shown as a
vector. This proved to have application in a number
of settings.

	 Experience with the physics engine was good.
Provided that the slope is smooth, the cylinder arrives
at the bottom with the expected velocity. A rough
terrain causes it to lose energy, which is probably
realistic.

D.	 Ice

	 The final experimental environment was a flat
sheet of ice. A sled can slide on the ice – perfectly
frictionless. Various experiments were developed.
The first involved a constant wind, like that that
often flows down from the South Polar Plateau. The
first physics problems were to calculate velocity by
timing the sled running over a measured distance,
and to calculate acceleration by measuring speed
change over a measured distance. An extension to
the velocity gate was made. Attaching a clock allows
the gate to record the time at which an object passes
through. In Fig. 5 a sled has just passed from left to
right. The clock on the gate is frozen at the moment
of velocity measurement.

	 The most interesting problems in Ice were to do
with arranging collisions between sleds. To have two
sleds collide, it was necessary to set them in starting
positions, start them at the same time with suitable
velocities, and most importantly to ensure that they
hit head on and accurately aligned.

	 A good feature of the system had always been that
physics was active at most times when the player
was working. The only exception was having a
simulation pause to ask the user to make a prediction.

34GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

At first, getting objects started at the same time
seemed to require that physics be frozen. Usability
tests showed that this wasn’t a good idea. It was hard
to remember that, and visually not obvious when,
physics wasn’t active. To avoid this, the mechanism
of having a single sled enter a frozen state when it
had its velocity set was adopted, visually denoted by
keeping the setting ‘vector’ visible.

Fig. 5. Velocity gate with clock after sled has passed

	
	 The next problem was to allow experiments in which

more than one sled starts moving at the same time.
We adopted the idea of a plunger, as used to set off
explosives, with connections to each item needing
activation. Activating the plunger sends a (slow,
visible) signal down each wire, guaranteed to reach
each destination at the same moment, regardless
of the lengths of the wires. To connect to more
than two destinations, plungers can be cascaded.
Connecting the wires is part of lab construction,
focusing the student’s attention to the timing issues
in an experiment. Fig. 8 shows one plunger wired
to a second that is attached to two sleds. A plunger
attachment wire is also visible in fig. 6.

	 The next aspect of setting up collisions was making
sure that sleds are properly aligned at the start of
an experiment and that they travel in straight lines.
Straight line travel was handled nicely by the physics
engine. The reason a real sled travels straight is
because its runners cannot easily slip sideways as
they cut slightly into the ice. In the physics engine
that can be simulated by setting anisotropic friction:
high for sideways motion and zero for forward/
backward motion. These characteristic of the sled
are obvious to the player. If you stand beside a sled
and push (by trying to move towards it), nothing will
happen. If you stand at an end you can push the sled
easily.

	 Alignment was more troublesome. Getting sleds
aligned required some magic – the introduction
of apparatus that couldn’t reasonably exist in the
real world. In Fig. 6, note that there is a block of
wood lying on the ice on each side of the sled. In
fact these are half of a set of four blocks. The other
two are left and right of the other sled. To align two
sleds the player must place a pair of blocks about
each of the sleds. The blocks are coupled. If one is

picked up and moved closer to its partner, the partner
simultaneously moves towards the one being held;
and the other pair echo their behavior. The two
pairs always remain aligned with each other. So, to
align two sleds, all that is necessary is to pick up a
block and bump it in against the sides of the sleds
a few times. Both sleds get pushed into alignment.
Afterwards, the blocks can be parked out of the way.
The sleds won’t creep out of alignment because their
anisotropic friction prevents sideways movement.

	 In a few operations, therefore, sleds can be aligned,
given a starting velocity and wired to a starting
trigger. A variety of collision and race experiments
are possible.

Fig. 6. Sled with physics frozen and velocity setting vector.

	 With the mechanics of experiment construction out
of the way, it is possible to focus on other aspects
of collisions. An important characteristic of colliding
objects is whether or not their collisions are elastic. It
seemed undesirable to have different types of sled for
this purpose. Instead, the construction metaphor was
employed again. Two kinds of buffer are supplied.
The student can modify a sled by attaching one or the
other. Black buffers are elastic, like blocks of rubber.
Blue buffers are inelastic. We have added a particle
effect to suggest that they are crushable containers of
water, as are sometimes used in motorway barriers to
absorb impact energy. Fig. 7 shows the moment of
contact of two blue buffered sleds.

E.	 Making connections.

	 It is important to consider the process of connecting
objects in 3D space. In Gary’s Lab an object can be
picked up by looking at it and left clicking (objects
flash yellow when in focus, to avoid uncertainty as to
which will be picked). The object can then be moved
and re-oriented as required. Putting it down in an exact
3D position can be a challenge because it is difficult to
judge depth on a two dimensional screen. For simply
stacking objects, where very precise location is not
critical, shadows provide enough guidance. Reaction
by the physics engine to objects touching by accident
is avoided by turning off collision detection on the
object being moved, making it possible to move it
in crowded surroundings, or even out from under
another object, without unwanted side effects.

35GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

	 When objects are being connected, however; for
example a rocket to a plank or a plank to a fulcrum,
high precision placement and orientation is needed. A
plank pushed by two rockets has no chance of flying
straight unless the two rockets point in the same
direction. Placing objects in contact is dangerous
as the physics system will react strongly if the user
releases an object while it is penetrating another,
pushing the objects apart, often ‘explosively’.

Fig. 7. Inelastic collision, soon after contact.

Fig. 8. Attachment points displayed on plunger.

 	
	 In Garry’s Lab we achieve precise placement by

including oriented attachment points as part of
object models. These points are highlighted when
an attachment process begins. For example, when
connecting to a plunger, the plunger displays
attachment points as hexagonal rings (see fig 8).
Connections are made to attachment points, and are
therefore always accurately aligned.

4.	 CONCLUSION

At its current state of development, Gary’s Lab should
be viewed as a prototype for ideas in teaching physics using
game technology. Our thesis is that a 3D environment is
appealing to students and is capable of delivering immersive
experiences that have the potential to give students useful
insight into the processes of motion and collision. We have
established that a standard commercial game physics engine
can deliver sufficiently accurate numeric results to satisfy the
needs of a high school physics lab in this domain over a good
range of activities.

We have conducted limited user testing. The Projectile
Lab had a good reception from a high school physics class, and
most aspects of the user interface have tested and refactored
with laboratory volunteers. It is difficult to establish the merits
of educational software more deeply. Ideally we should try
to determine whether our software actually leads to students
having better understanding of physics. However, it may be
more realistic to look at secondary measures. For example,
we already have evidence that students like the software. If
that meant that they spent more time working with physics
than they might otherwise have, then perhaps the software
could be said to be worthwhile. Possibly, as the digital native
generations spread through the education system, we will need
appealing interactive software just to maintain the status quo,
as they demand and expect an educational experience which is
of the same standard as the entertainment they spend so much
time enjoying.

REFERENCES

[1]	 A. L. Aitken, Playing at Reality: Exploring the Potential of the Digital
Game as a Medium for Science Communication, PhD Thesis, ANU,
2004

[2]	 Broderbund Software, Where in the World is Carmen Sandiego, 1985,
described in http://en.wikipedia.org/wiki/Where_in_the_World_Is_
Carmen_Sandiego

[3]	 B. Davidson, Math Blaster, 1987, described in http://en.wikipedia.org/
wiki/Math_Blaster

[4]	 R. Koster, A theory of fun for game design, Paraglyph Press, England,
2004

[5]	 G. Newman, Garry’s Mod, 2006, http://www.garrysmod.com
[6]	 NVidia, PhysX Technology, http://www.nvidia.com/object/physx_

new.html, 2009
[7]	 A. J. Stapleton, and P. C. Taylor, Physics and Playstation too: Learning

Physics with Computer Games, AIP Conference, 2002
[8]	 Wikipedia, SimCity, retrieved from http://en.wikipedia.org/wiki/

SimCity, 21 Feb, 2010
[9]	 J. L. Zachary, Introduction to Scientific Programming Computational

Problem Solving, 1996 (associated web site) http://www.cs.utah.edu/
~zachary/isp/applets/Cannon/Cannon.html.

Bill Rogers is a senior lecturer in Computer
Science at the University of Waikato in Hamilton,
New Zealand. His research interests are HCI, large
screen displays and recently games and computer
graphics.

Dacre Denny received his B.E. in software
engineering in 2008 and has just finished an M.Sc. in
computer graphics, both at Waikato University. His
art and software can be seen at www.dacredenny.
com

Jonathan Stichbury received his B.E. in software
engineering at Waikato University in 2008 and now
works as a developer at the Hamilton based company
SmarTrak which makes GPS based vehicle tracking
systems.

