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Laboratory exercises are an important part of secondary 
school physics classes that make an important contribution to 
student learning. Virtual laboratories have the advantage of 
allowing experiments that might be too dangerous or too costly in 
the real world. We present Gary’s Lab, an experimental immersive 
3D laboratory environment using computer game technology. 
Our system allows students considerable freedom in constructing 
apparatus, and running qualitative and quantitative experiments 
using that apparatus. We argue that the process of constructing 
experiments in interesting contexts might be expected to help 
students engage with their lessons, focusing their attention on the 
apparatus and the methods of measurement used.

Index Terms—physics education, computer game, virtual 
laboratory

1.	 INTRODUCTION

Much has been written about using computer game 
technology for teaching. In the words of Stapleton and Taylor 
[7] Computer games seem to captivate the imagination and 
attention of contemporary teenagers. If only the energy, 
motivation, fun and exhilaration they enjoy from playing 
games on their PC, or on consoles ... could be captured in 
learning physics! Although the potential has long been 
appreciated, there has not been the level of success we might 
have anticipated. The state of the art in 2004 was carefully 
analyzed by Aitkin [1]. He classifies educational games as 
‘Data Based’, or ‘Process Based’ and relates the two categories 
to the instructivist and constructivist educational philosophies 
respectively. Roughly stated, instructivist educators seek to 
present information to students, as though their minds are 
empty and need filling; constructivists take the view that 
students learn by interacting with their environment and 
problem solving to extend or change existing knowledge.

Like instructivists, data based games present information 
and drill students in using it. The game setting, narrative and 
reward system encourage the player to continue, but often bear 
little relationship to the educational content. There have been 
some noteworthy successes in this genre. Math Blasters[3] 
and Where in the World is Carmen San Diego[2] being two of 
the best known examples. Math Blasters requires a player to 
solve problems in arithmetic in order to progress a space alien 
adventure. Answering geography questions allows a player to 
find the mysterious hidden Carmen San Diego.

In contrast, Aitken suggests that process based games 
have the potential to present environments for learners to 
explore and engage in self motivated learning by solving 

personally meaningful problems. Such games take the form of 
simulations in which players have a wide range of choice as 
to their actions and can observe realistic consequences from 
those actions. A successful example of a process based game 
is SimCity[8]. Here, players control allocation of resources in 
the development of a city. The goal of the game is to have the 
city grow. The program does not require that this be done in 
any particular way. It simulates as realistically as possible the 
various physical and economic processes of a city, and leaves 
it to the player to work within those constraints. SimCity 
has been widely used in classrooms. Sadly, success with 
other simulation games is rare. Aitkin reviews a number of 
noteworthy failures and concludes that very few digital games 
based upon scientific simulations have been made and most of 
those that have been made are not enjoyable to play.

What is it about computer games that teenagers so enjoy? 
Koster[4] argues that the ‘fun’ is about learning – developing 
skills and exercising them. For a game to be fun, skills 
required must be at just the right level; challenging, but at such 
a level that success is possible. If the challenge is too low, 
boredom sets in; too great and players will become frustrated. 
A good background story underpins the goals and objectives 
of play, letting the player understand what is expected of them. 
Modern teenagers are also connoisseurs of game technology, 
appreciative of and having high expectations of the computer 
graphics and game play. Games that fall short will be quickly 
rejected.

It is clear that the task of building a successful computer 
game for teaching is not an easy one. Defining success as the 
difference between expectation and achievement, the goal of 
this paper is to work towards more ‘successful’ educational 
computer games in two ways. The first is to suggest and 
demonstrate what we consider to be promising ideas for 
teaching high school physics. The second is contribute to 
reducing the expectation people have of such software.

Our project is called Gary’s Lab. It provides a laboratory 
environment for high school physics students, supporting 
constructive learning. Both qualitative and quantitative 
experiments have are supported. In a laboratory, students can 
test the theory they have been given; they learn to use apparatus, 
and make measurements; they learn about experimental error. 
Most importantly, abstract concepts become tangible, and 
they can see that theory will usefully predict experimental 
outcomes. There are a wide range of choices to be made in 
setting up laboratory experiments. Sometimes an experiment 
may be completely pre-built and the student simply asked to 
run it and observe results. A better option is for the student to 
assemble or even design their own apparatus. Whilst this may 
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seem inefficient in use of the students’ time, it actually has value 
in drawing their attention to aspects of the equipment that they 
might otherwise overlook. It provides a level of engagement 
with the task that can only be achieved by spending that time, 
and being responsible for as much of the process as possible. 
Building apparatus provides students with the possibility 
of making mistakes, and also the possibility of trying 
alternatives. Our goal in the Gary’s lab project is to provide 
a laboratory for teaching which has this ‘building’ aspect. It 
is named in recognition of Garry Newman, responsible for 
a physics sandbox game called Garry’s Mod[5], written as a 
modification for the Source game engine.

In the spirit of reducing expectations, it is firstly not 
our goal that the software should ‘teach’ as such. That is the 
role of the classroom instructor. The purpose of our software 
is to allow students to test their knowledge of physics in 
interesting situations. We have not included any assistance 
with calculation in the software. We expect that students will 
do calculations themselves, using their knowledge of physics 
and measurements taken from our simulations. Although 
software could easily help in this area, having it do so would 
undermine the development of skills expected in our high 
school curriculum. Secondly we have no illusions about this 
being an ‘addictive’ computer game. We do however hope that 
we can build Gary’s Lab to a high enough technical standard 
to be acceptable to a modern ‘digital native’ student. Most 
importantly we hope to emulate computer games by achieving 
a good level of ‘immersion’ for our users. Ideally they will feel 
that they are participating in a credible environment, enough 
to help them gain intuition and understanding of the way the 
physics works – especially of mass, size and speed.

Fig. 1. Abstract Simulation [9].

The idea of using a virtual laboratory is not new. It can 
permit experiments that are not practical due to scale, safety or 
cost. From the student’s perspective, experiments can be larger 
and more dramatic. It is also possible to simplify physics in an 
artificial world. For example, it is possible to have genuinely 
frictionless surfaces. We have taken great care here though. In 
our system it is not possible to bypass simulation and directly 
make sure theory always works perfectly, because we require 
that experiment variations which a student may choose to do 
have realistic outcomes.

There is a good deal of existing software that can be 
used to teach aspects of physics. Typically, software that 
supports quantitative experiments has largely pre-built setups 
and tends to be non immersive and abstract. For example, a 
program that allows experimentation with projectile motion 

might show equations, allow setting of angle and speed, then 
show a roughly animated 2D simulation with numbers rolling 
as it proceeds. Fig. 1 shows an example. There are a number 
of pieces of software that allow the user to build models, and 
then watch their behaviour, subject to the laws of ‘physics’. 
Recent examples are “The World of Goo”, “Little Big Planet” 
and of course “Garry’s Mod”. Each of these is qualitative. It is 
not possible to use them to trial physics equations.

An underlying assumption of the Gary’s Lab project 
is that a standard game physics engine will simulate physics 
accurately enough to be used for quantitative experiments. 
Section II of our paper addresses the issue of physics 
calculations. Section III describes the sample laboratories we 
have constructed and some of the experiments they permit. 
Section IV reflects on the current state of the Gary’s Lab 
project.

2.	 PHYSICS SIMULATION

The Gary’s Lab implementation is built using NVidia’s 
PhysX engine (originally provided by Ageia)[6]. The physics 
engines used in computer games have not been designed for 
precise simulation. Rather they are built to operate quickly 
and satisfy their analogy to the first law of graphics – “If it 
looks ok, it is ok”. In operation, game physics engines may 
deviate from real physics in a number of ways.

Firstly, calculations are done in finite time steps, as a 
numerical integration. If the time steps are large, this may 
generate inaccuracies. Fortunately our system does not 
require very high precision. Students typically measure sub-
metre distances to the nearest millimeter and multi-metre 
distances to the nearest centimeter; angles to one degree; 
speed and acceleration to two or at most three significant 
digits. Most experiments involve features, like friction or air 
resistance, that are not included in the calculations. As a result 
it is uncommon to perform an experiment with uncertainty of 
results better than 1%. We have taken this as our goal – to get 
physics simulation that is accurate to 1%.

More difficult is the collision system. In a game physics 
engine, exact collision calculations are expensive. To avoid 
this cost objects are firstly given a simplified ‘physics volume’ 
for collision calculation. This might be an enclosing sphere, 
cube or maybe a convex hull. Such simplified physics models 
have proved satisfactory in our experiments. Secondly, the 
time of collision is not accurate as a result of the finite step 
integration used for movement. Objects jump from step to 
step and collision testing is done after each step. In the worst 
case, if an object is moving very fast, the distance moved in a 
single time step may be such that collision with a small or thin 
object may be missed altogether. Usually objects are slightly 
overlapped (interpenetrating) when a collision is detected. 
Real objects bend or compress on impact. In a game physics 
engine, it is possible to simulate deformable objects, but it is 
more common to treat objects as though they were completely 
rigid, accepting a small level of interpenetration on collision, 
and applying a spring force to separate the objects back to 
the point of contact. This is not physically accurate, but gives 
a reasonable approximation to compression. With complex 
shapes, the restoring force may not be applied in quite the 
right direction, but with simple cubes, spheres and cylinders 
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the results have proved acceptable in our experiments. So long 
as movements are not too fast with respect to the sizes of the 
objects, our results have been accurate enough. 

The final problem we have observed with physics 
calculations occurs when several objects are connected to 
each other. One example is a rope, simulated as a chain of 
hinged segments; another is a number of rigid bars connected 
to form a closed shape. Physics engines compute the forces 
and motions separately for each rigid component and then 
iterate to get consistency between components. Just as with 
interpenetration, restoring forces substitute for unresolved 
violations of joint constraints. The result can be violent 
movement or instability. We have tried to choose parameter 
settings to minimize such effects. 

Overall, we have been pleased with the accuracy of 
simulations. In the same way that real experiments don’t give 
perfect results because of uncontrolled variables and over-
simplified physics, our system doesn’t give perfect results, just 
for different reasons. The results, however, are close enough.

3.	 PROTOTYPE LABORATORIES

Four prototype laboratory environments have been 
constructed, covering different parts of the kinematic syllabus 
for the last two years of high school in New Zealand (usually 
15 to 17 year old students). The first was Projectile Motion, in 
which an object was thrown over a canyon; then Rotational 
Motion, where an airplane circled a mountain tethered by an 
improbably long rope; Roller, with a large cylinder rolling 
down a slope; and Ice where frictionless sleds moved in 
various ways. Ice also served as a surface for a number of 
rocket propelled devices.

A.	 Projectile Motion

	 The player (student) is standing on one side of a 
canyon. Apparatus available is a triangular pivot 
base (the fulcrum), a plank, and an anvil. The game 
objective is to throw crates across the canyon. The 
quantitative physics learning objective is to use the 
equations of ballistic motion, to calculate the landing 
point of the cube after being thrown. The student 
must first assemble a see-saw from the fulcrum and 
plank, place the crate to be thrown; and then drop an 
anvil onto the seesaw to launch the crate. There is 
room here for qualitative experiments – sliding the 
plank about on the fulcrum allows test throws with 
different leverage. The height and position – from 
which the anvil is dropped can also be varied, as can 
the position and orientation of the whole apparatus.

	 It is an attractive feature of a simulation world that 
the construction process can be used as needed, and 
‘magic’ applied at other times to achieve a desired 
result. A more elaborate lab setup might have 
included some mechanism for raising the anvil, but 
we saw that as a distraction from the task on which 
we wanted the student to focus. It is useful for them 
to build the seesaw, because that draws attention to 
position of the plank and provides an opportunity 
to vary it. We are also interested in where the anvil 
falls. Adding and having the user operate a crane 

would not have helped. Instead the anvil simply has 
the capability of being raised to a measured height 
above the point on the ground at which it was placed. 
Students did not comment on this lack of realism 
during trials.

Fig. 2. Projectile Motion: Seesaw and crate.

	
	 On launch the simulation is paused to give the student 

a chance to calculate the landing point of the crate. 
An interesting design problem is to decide on the 
best way of returning numerical results to the user. 
Gary’s Lab uses two different methods, illustrated 
in this experiment. Launch speed and angle for the 
crate are reported automatically as shown in fig 3. As 
well as the text display, the vector is shown in space 
above the crate (white ‘sail’ with red outline). The 
vector is animated as the crate flies, to help show the 
nature of the motion. Secondly the system includes 
measurement tools. In this case a tape measure can 
be used to position a marker at the expected landing 
zone. It can be seen in fig 3, connecting two giant 
map pins. The tape length is shown as bill-boarded 
text next to the near pin.

Fig. 3. Tape measure and velocity display

	
	 As projectile motion is particularly simple, involving 

no collision detection, aside from the final landing, 
the game physics engine has no difficulty in 
accurately simulating the motion. Of course, the 
virtual world conveniently lacks air resistance, so 
the physics model of the game is the same as that of 
a high school physics student.

	 In summary, the general pattern of this lab exercise 
is to begin with a construction phase and a time for 
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qualitative experiments. This is the ‘sandbox’ part of 
the experiment. Then a trial is undertaken, for which 
the system requires the user to make a quantitative 
prediction – in this case placing a target at the 
expected landing point. Finally, the system runs its 
simulation and reports success or failure to the user. 
The simulation provides a nice period of suspense 
before the outcome is determined.

	 When Projectile Motion was trialed in a school, the 
class teacher decided to run the experiment once 
using a data projector and had the students in the 
class make individual predictions. The most popular 
prediction was entered into the system. Again the 
suspense time worked well.

	 Whilst the game style of: build; predict; suspense 
and result was attractive, it hasn’t been applied in 
all of the other environments. At this stage Gary’s 
Lab is not a complete game system, and there are 
inconsistencies; it being deemed more valuable to 
trial as many experiments as possible. Some are 
game styled, and some work in sand box mode.

B.	 Rotational Motion

	 The physics objective here was simply to relate 
angular velocity, speed, radius and period. However, 
the game aspects of the lab are the most complex of 
all the labs yet developed. The setting is of a plane, 
tethered to a tower at the top of a hill in the centre 
of an island. In fact, the plane begins on the ground. 
The player must connect a rope from the plane to the 
tower, and then fly the plane up to a cruising height. 
They have control of aircraft pitch allowing them to 
fly up or down. The game physics controls circular 
motion – by the mechanism of the rope connected 
to the plane. There is a game play aspect. Once 
cruising altitude has been reached the player must 
keep the plane level and complete a circuit through 
the yellow ‘smoke’ rings. The calculation required is 
to determine the plane’s orbital period from its speed 
and the length of the rope (measured using the tape 
measure).

Fig. 4. Rotational Motion: Flying through rings

	
	 The physics modeling is complex in this exercise. 

The rope is built as a hinged line of rigid segments. 
It performs well so long as is it kept tight. The rope 
segments have some mass, so the rope sags a little. 
If the rope is allowed to become slack, and the plane 
suddenly stretches it, the physics system’s handling 

of the stretched connections tends to apply a sudden 
large force to the plane, flicking it through the air. It 
doesn’t seem unreasonable for something like that 
to happen with the rope suddenly snapping tight. 
A real rope would either break or pull the aircraft 
apart. Even though this behavior might not be ideal, 
it doesn’t lead to the player getting bad numerical 
results. If they lose control of the plane they don’t 
get any results at all. Their only option is to try 
again. Considerable effort also went in to keeping 
the aircraft from tumbling at the end of the rope. 
To simulate the stabilizing effect of the tail in the 
physics model, a small force was applied on each 
frame to keep the plane pitched into its direction of 
flight.

C.	 Roller

	 In this laboratory, a large cylindrical object rolls 
down a slope. The physics task is to predict its 
velocity at the base of the slope from knowledge 
of its radius and the height of the slope. The user 
interface issue was to provide a device for measuring 
velocity. After considering radar guns, we settled on 
something more visual if less realistic. The idea is 
that the two poles with the white rings (see fig. 5) 
support a ‘force field’ that measures the velocity of 
any object passing through. The result is shown as a 
vector. This proved to have application in a number 
of settings.

	 Experience with the physics engine was good. 
Provided that the slope is smooth, the cylinder arrives 
at the bottom with the expected velocity. A rough 
terrain causes it to lose energy, which is probably 
realistic.

D.	 Ice

	 The final experimental environment was a flat 
sheet of ice. A sled can slide on the ice – perfectly 
frictionless. Various experiments were developed. 
The first involved a constant wind, like that that 
often flows down from the South Polar Plateau. The 
first physics problems were to calculate velocity by 
timing the sled running over a measured distance, 
and to calculate acceleration by measuring speed 
change over a measured distance. An extension to 
the velocity gate was made. Attaching a clock allows 
the gate to record the time at which an object passes 
through. In Fig. 5 a sled has just passed from left to 
right. The clock on the gate is frozen at the moment 
of velocity measurement.

	 The most interesting problems in Ice were to do 
with arranging collisions between sleds. To have two 
sleds collide, it was necessary to set them in starting 
positions, start them at the same time with suitable 
velocities, and most importantly to ensure that they 
hit head on and accurately aligned.

	 A good feature of the system had always been that 
physics was active at most times when the player 
was working. The only exception was having a 
simulation pause to ask the user to make a prediction. 
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At first, getting objects started at the same time 
seemed to require that physics be frozen. Usability 
tests showed that this wasn’t a good idea. It was hard 
to remember that, and visually not obvious when, 
physics wasn’t active. To avoid this, the mechanism 
of having a single sled enter a frozen state when it 
had its velocity set was adopted, visually denoted by 
keeping the setting ‘vector’ visible.

 

Fig. 5. Velocity gate with clock after sled has passed

	
	 The next problem was to allow experiments in which 

more than one sled starts moving at the same time. 
We adopted the idea of a plunger, as used to set off 
explosives, with connections to each item needing 
activation. Activating the plunger sends a (slow, 
visible) signal down each wire, guaranteed to reach 
each destination at the same moment, regardless 
of the lengths of the wires. To connect to more 
than two destinations, plungers can be cascaded. 
Connecting the wires is part of lab construction, 
focusing the student’s attention to the timing issues 
in an experiment. Fig. 8 shows one plunger wired 
to a second that is attached to two sleds. A plunger 
attachment wire is also visible in fig. 6.

	 The next aspect of setting up collisions was making 
sure that sleds are properly aligned at the start of 
an experiment and that they travel in straight lines. 
Straight line travel was handled nicely by the physics 
engine. The reason a real sled travels straight is 
because its runners cannot easily slip sideways as 
they cut slightly into the ice. In the physics engine 
that can be simulated by setting anisotropic friction: 
high for sideways motion and zero for forward/
backward motion. These characteristic of the sled 
are obvious to the player. If you stand beside a sled 
and push (by trying to move towards it), nothing will 
happen. If you stand at an end you can push the sled 
easily. 

	 Alignment was more troublesome. Getting sleds 
aligned required some magic – the introduction 
of apparatus that couldn’t reasonably exist in the 
real world. In Fig. 6, note that there is a block of 
wood lying on the ice on each side of the sled. In 
fact these are half of a set of four blocks. The other 
two are left and right of the other sled. To align two 
sleds the player must place a pair of blocks about 
each of the sleds. The blocks are coupled. If one is 

picked up and moved closer to its partner, the partner 
simultaneously moves towards the one being held; 
and the other pair echo their behavior. The two 
pairs always remain aligned with each other. So, to 
align two sleds, all that is necessary is to pick up a 
block and bump it in against the sides of the sleds 
a few times. Both sleds get pushed into alignment. 
Afterwards, the blocks can be parked out of the way. 
The sleds won’t creep out of alignment because their 
anisotropic friction prevents sideways movement.

	 In a few operations, therefore, sleds can be aligned, 
given a starting velocity and wired to a starting 
trigger. A variety of collision and race experiments 
are possible.

 

Fig. 6. Sled with physics frozen and velocity setting vector.

	 With the mechanics of experiment construction out 
of the way, it is possible to focus on other aspects 
of collisions. An important characteristic of colliding 
objects is whether or not their collisions are elastic. It 
seemed undesirable to have different types of sled for 
this purpose. Instead, the construction metaphor was 
employed again. Two kinds of buffer are supplied. 
The student can modify a sled by attaching one or the 
other. Black buffers are elastic, like blocks of rubber. 
Blue buffers are inelastic. We have added a particle 
effect to suggest that they are crushable containers of 
water, as are sometimes used in motorway barriers to 
absorb impact energy. Fig. 7 shows the moment of 
contact of two blue buffered sleds.

E.	 Making connections.

	 It is important to consider the process of connecting 
objects in 3D space. In Gary’s Lab an object can be 
picked up by looking at it and left clicking (objects 
flash yellow when in focus, to avoid uncertainty as to 
which will be picked). The object can then be moved 
and re-oriented as required. Putting it down in an exact 
3D position can be a challenge because it is difficult to 
judge depth on a two dimensional screen. For simply 
stacking objects, where very precise location is not 
critical, shadows provide enough guidance. Reaction 
by the physics engine to objects touching by accident 
is avoided by turning off collision detection on the 
object being moved, making it possible to move it 
in crowded surroundings, or even out from under 
another object, without unwanted side effects.
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	 When objects are being connected, however; for 
example a rocket to a plank or a plank to a fulcrum, 
high precision placement and orientation is needed. A 
plank pushed by two rockets has no chance of flying 
straight unless the two rockets point in the same 
direction. Placing objects in contact is dangerous 
as the physics system will react strongly if the user 
releases an object while it is penetrating another, 
pushing the objects apart, often ‘explosively’. 

Fig. 7. Inelastic collision, soon after contact.

Fig. 8. Attachment points displayed on plunger.

 	
	 In Garry’s Lab we achieve precise placement by 

including oriented attachment points as part of 
object models. These points are highlighted when 
an attachment process begins. For example, when 
connecting to a plunger, the plunger displays 
attachment points as hexagonal rings (see fig 8). 
Connections are made to attachment points, and are 
therefore always accurately aligned.

4.	 CONCLUSION

At its current state of development, Gary’s Lab should 
be viewed as a prototype for ideas in teaching physics using 
game technology. Our thesis is that a 3D environment is 
appealing to students and is capable of delivering immersive 
experiences that have the potential to give students useful 
insight into the processes of motion and collision. We have 
established that a standard commercial game physics engine 
can deliver sufficiently accurate numeric results to satisfy the 
needs of a high school physics lab in this domain over a good 
range of activities.

We have conducted limited user testing. The Projectile 
Lab had a good reception from a high school physics class, and 
most aspects of the user interface have tested and refactored 
with laboratory volunteers. It is difficult to establish the merits 
of educational software more deeply. Ideally we should try 
to determine whether our software actually leads to students 
having better understanding of physics. However, it may be 
more realistic to look at secondary measures. For example, 
we already have evidence that students like the software. If 
that meant that they spent more time working with physics 
than they might otherwise have, then perhaps the software 
could be said to be worthwhile. Possibly, as the digital native 
generations spread through the education system, we will need 
appealing interactive software just to maintain the status quo, 
as they demand and expect an educational experience which is 
of the same standard as the entertainment they spend so much 
time enjoying.
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