
25GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTFDOI: 10.5176_2010-2283_1.1.05

Abstract—In the following we will discuss a cost effective
immersive gaming environment and the implementation in
Blender [1], an open source game engine. This extends traditional
approaches to immersive gaming which tend to concentrate
on multiple flat screens, sometimes surrounding the player, or
cylindrical [2] displays. In the former there are unnatural gaps
between each display due to screen framing, in both cases they
rarely cover the 180 horizontal degree field of view and are
even less likely to cover the vertical field of view required to
fully engage the field of view of the human visual system. The
solution introduced here concentrates on seamless hemispherical
displays, planetariums in general and the iDome [3] as a specific
case study. The methodology discussed is equally appropriate
to other realtime 3D environments that are available in source
code form or have a suitably powerful means of modifying the
rendering pipeline.

Keywords—Immersion, Blender, iDome, Peripheral vision,
Gaming, Virtual reality, Planetarium, Fisheye.

1.	 INTRODUCTION

It is appreciated by the gaming industry that filling the
peripheral vision of the player greatly heightens engagement
with games played within a 3D virtual environment. This is
not surprising since this is how we experience our real 3D
world [4]. It is also well accepted in the virtual reality [5]
community that peripheral vision is a key contributor to the
sense of immersion, of “being there” [6], also referred to as
“presence” [7]. The most straightforward way of extending
the field of view of play is to add more screens, preferably in a
curved arrangement around the player. This approach when it
is to be extended beyond 2 displays requires either additional
graphics cards or display extenders such as the Matrox dual
and triple head [8] to go units. Matrox themselves in the past
have released cards with three output ports (Parhelia series)
and more recently AMD have demonstrated their 6 port
Eyefinity [9] graphics card. The requirement on the software
is support for multiple user defined perspective frustums,
usually asymmetric (offaxis) frustums. It should be noted that
using for a single wide perspective frustum is only applicable
to multiple displays aligned in a plane.

These options however fail to really fill the human
players field of view which extends to almost 180 degrees
horizontally and about 120 degrees vertically. They also
generally involve borders around the physical displays, which
can be corrected for as if one was looking through a window

with frames, but is still an obstruction for most 3D worlds. Car
and flight simulators may be the exception where the display
borders can be made to coincide with car or cockpit window
frames.

In the virtual reality domain these shortcomings are often
solved with either a cylindrical display or a number of flat
walls surrounding the player, to remove the display borders
a number of data projectors are employed. This introduces
the complexities of multiple projectors (typically 3 or 4) and
the requirement for edge blending for a seamless result. Such
systems generally impose significant demands on the software
model and still do not in general fill the players vertical field
of view.

An observer at the center of a hemisphere onto which
digital images are projected will have their field of view totally
covered. This is surely the ultimate immersive environment,
one where no display border and no imagery from the real
world impinges on the players view of the virtual world.
Historically the institution where this occurs is a planetarium,
any visitor to a modern digital planetarium is well aware of the
immersive effect. It is the implementation of this in the iDome,
a small scale “personal planetarium”, that is the discussion of
the remainder of this paper. A seamless hemispherical display
that engages our whole visual field of view, and the support for
games created using the Blender Game Engine (BGE).

It should be pointed out that the desire for hemispherical
immersion has lead some gamers to implement solutions that
fill the players field of view without modifying the images
generated by the game. While they provide extremely distorted
experiences particularly in the peripheral area, they clearly
have some attraction and provide some heightened sense
of immersion. Examples of these are the so called “jDome”
[10] and “TOOB” [11] configurations. They both rely on a
wide field of view setting in the game and use a single data
projector, as such they have the advantage of working with
a wide range of existing games without modification. The
downside is the distortion that increases towards the rim of the
hemisphere due to the use of a standard perspective projection
rather than the required fisheye projection. In contrast, the
goal here is to provide a distortion free experience across the
players entire field of view. It is expected that for many game
genres this will provide a gaming advantage since the player
will be able to perceive events and threats in their far visual
field, an evolutionary explanation for peripheral vision in the
real world.

Immersive Gaming in a Hemispherical Dome
Case study: Blender Game Engine
Paul David Bourke

WASP/iVEC, University Of Western Australia
35 Stirling Hwy, Crawley

Perth, 6009. Australia.
Email: paul.bourke@uwa.edu.au

Dalai Quintanilha Felinto

EAU / Universidade Federal Fluminense
Rua Passo da Pátria, 156 - São Domingos

Niterói / Rio de Janeiro, Brazil

26GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

2.	 FISHEYE PROJECTION

The single perspective projection most games provide
is generally inadequate for immersive systems that surround
the gamer. In essence, a single perspective projection does
not capture the field of view the surround display can present
to the gamer. For a cylindrical display surface the most
appropriate geometric projection is a portion of a cylindrical
panorama. For a hemispherical display the most natural
geometric projection is known as a fisheye projection. Only
a fisheye projection captures the visual information required
for subsequent display on a hemispherical surface, in the
same way that a perspective projection captures the visual
information within a rectangular frustum and suitable for
display on a flat plane. More precisely, the fisheye projection
traditionally used is called an equiangular fisheye, it is one of
many possible ways of mapping a 3D vector onto a unit circle.
An equiangular fisheye is one where the relationship between
a vector into the scene and position on the fisheye image is as
illustrated in figure 1. They key is the relationship between the
radius r of the point on the 2D fisheye image and the angle f of
the 3D vector from the camera into the scene, namely:

r = f / (A/2)

Where A is the aperture of the fisheye image, in this
discussion A = π radians for a hemispherical fisheye. In
a practical sense this mapping gives the most unbiased
distribution of 3D information across the fisheye projection.

 Fig. 1. Relationship between a point on a fisheye image P(i,j) and the
vector P(x,y,z) into the scene. The virtual camera is at the origin of this local
coordinate system looking down the y axis and an up vector along the z axis.

3.	 DOME

The iDome, see figure 2, is a small 3m diameter personal
hemispherical display device. The imagery on the dome
surface is generated not with a projector and fisheye lens but
by employing a spherical mirror [12] to scatter the projectors
light across the wide angles required. The image distortion
this would normally introduce is compensated for in realtime
by predistorting the fisheye [13] content such that the result on
the dome appears correct.

While the remainder of this discussion will focus on
the iDome environment and it’s unique image generation
solution it should be pointed out that the techniques discussed
are applicable to most hemispherical dome arrangements
[14]. This includes the two most common single projector

projection systems, namely a data projector with a fisheye lens
or a spherical mirror.

4.	 BLENDER IMPLEMENTATION

“Blender is the free open source 3D content creation
suite, available for all major operating systems under the GNU
General Public License.” [1] Blender is often associated with
its powerful modeling, rendering and animation capabilities,
less well known is the realtime and gaming engine capabilities.
This includes a full physics engine, collision detection,
dynamic constraints, realtime shadows, GLSL shaders and so
on. The open source nature of Blender means that it is possible
to add support for new functionality, such as the generation of
fisheye views required for the hemispherical dome surround
displays.

The generation of fisheye images involves the well
understood technique of rendering to cubic maps. That is,
rendering multiple 90 degree field of view (horizontally and
vertically) perspective projections that cover the required field
of view of the display surface, these images are then processed
so as to produce the fisheye projection. The most efficient
arrangement is to use 4 renderings with frustums passing
though the vertices of a unit cube centred at the camera, the
camera is pointed towards the midpoint of the edge of the
cube, see figure 3. The fisheye image is formed by applying
the 4 renderings as textures to 4 suitably constructed meshes,
the vertices and associated texture coordinates of which are
designed so as to form the desired fisheye projection.

5.	 MESH GENERATION

The formation of the meshes that will form the fisheye
image from the 4 cubic face rendered images has been added
to the Blender Game Engine and will appear as a built-in
capability from version 2.49 onwards. There are three distinct
stages to the creation of these meshes, these are now outlined
and illustrated in figure 4a, 4b, 4c.

A.	 Stage 1: Tessellation

	 Tessellation of the 4 faces of the cube, see figure
4a. A triangular mesh tessellation is chosen where
each edge of a triangle is bisected to form 4 smaller
triangles. Initially the square left and right cube
faces are split into two right angle triangles. Only
the portions of the top and bottom faces that are
actually used are tessellated. On every iteration of
the tessellation the number of triangles increases
by a factor of 3. At each stage of the tessellation
the texture coordinates of each vertex is calculated
as the average of the texture coordinates of the split
edge. The texture coordinates of the right face are
shown in the first two tessellation iterations in figure
4a. These texture coordinates are associated with the
rendering of the frustum corresponding to the right
face of the cube, as such they are preserved during
any subsequent modification to the mesh. The degree
of tessellation is a compromise between the quality
of the warping (the more smaller triangles the better)

27GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

and performance (the more triangles the higher
performance penalty). The tessellation starts with 6
triangles, in general 4 iterations have been employed
giving a total mesh triangle count of 486.

Fig. 2. The iDome, a 3m diameter truncated hemispherical dome in profile
and photographed on site. An important issue with a fisheye lens system is
that it occupies the middle of the dome, this is region best occupied by the
player. In contrast, he spherical mirror projection positioning frees up the

entrance to the dome significantly.

Fig. 3. Camera coordinate system with respect to the 4 faces of the cube
that define the 4 rendering frustums. This is the minimum number of cube

faces required in order to capture the field of view required for a 180 degree
fisheye.

B.	 Stage 2: Inflation

	 The mesh from step 1 is inflated to form a hemisphere,
see figure 5. This modifies the vertices but retains
the texture coordinates. Each vertex in this inflated
hemisphere can be considered a unit vector from the
camera into the 3D world, the same vector as the
corresponding vertex in the tessellated cube faces in
figure 4.

Fig. 4. Iterative tessellation of the faces of the cube that define the 4
perspective view frustums. Texture coordinates for the right cube face shown

in the first two iterations.

Fig. 5. Inflation of the cube vertices to form a hemisphere while retaining
the texture coordinates.

Fig. 6. Flattening the hemisphere according to the equiangular fisheye
equations.

C.	 Stage 3: Flatten

	 The final stage involves flattening the hemispherical
mesh according to the equiangular fisheye projection
equations. This modifies the vertices so they lie in
the x-z plane (see figure 1) and the (u,v) coordinates
provide the mapping from the cube face images. The
normalised image coordinates on the interval (-1,1)
are given by the following:

28GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

x = r cos(θ)
z = r sin(θ)

where, for a 180 degree fisheye
r = j / (p/2)

and
j = atan2(√(P2

x + P2
z), Py)

θ = atan2(Pz,Px)

	 where atan2() is the standard math library function
for calculating angles on the range –π to π.

D.	 Fisheye Warping

	 If a data projector with a fisheye lens is employed
then there is nothing left to do besides rendering
the above 4 textured meshes using an orthographic
camera. For a projection system based upon the
spherical mirror an additional pass applies the image
from the orthographic camera as a texture onto
another mesh that performs the warping required.
This second mesh is then rendered using another
orthographic camera to produce the image finally
sent to the data projector.

	 The vertices and texture coordinates of this warping
mesh are created with external software and saved in
a plain text file. The format of this file is quite simple,
a 2 line header describing the type and dimensions of
the mesh followed by the data for each vertex. This
file format has been standardised by the author for
describing warping for the spherical mirror projection
and as such has been widely adopted. This mesh is in
general different for each physical installation since
it depends on the geometry of the hardware, that is,
the projector-mirror-dome positions, the optics of the
data projector, the size of the dome and mirror, and
so on. The appearance of the mesh used for the HD
(16x9) projector of the iDome is illustrated in figure
4d. While not shown here, the vertices of the mesh
also contain a multiplicative intensity value that can
be used to compensate for brightness variation across
the dome arising from different light path lengths.

Fig. 7. The appearance of the mesh onto which the fisheye image is applied
as a texture in order to create a warped fisheye for the iDome configuration

(HD 1920x1080 data projector).

For a fisheye based data projection system a 5 pass
rendering pipeline is used, that is, 4 cubic render-to-textures
passes of the 3D world and a final orthographic rendering

of the mesh that creates the fisheye image. For a spherical
mirror there is an additional render-to-texture to capture the
orthographic rendering of the fisheye textured mesh and the
result applied to the warping mesh. The overall pipeline for a
particular car racing game (“Club Silo” from Luma Studio) is
illustrated in figure 5. The game being played in the iDome is
shown in figure 6.

Fig. 8. Pipeline showing the various render passes required to form a fisheye
image or the warped equivalent from the 4 cube maps.

Fig. 9. iDome and car racing game example. While the warped image sent
to the data projector (figure 5) appears distorted, the imagery is perfectly

correct on the dome surface.

VI.	 CONCLUSION

We have demonstrated how fisheye and warped fisheye
projections can be created using the Blender Game Engine.
Such projections are required for fisheye lens or spherical
mirror projection into hemispherical displays using a single
data projector, the most affordable option for gaming. The
benefit of an open source project such as Blender is that
any game written in that software can be readily converted
to support this unique immersive display, for example, the
YoFrankie game shown in figure 7. The multipass rendering

29GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

DETC2006-99155, September 2006.
[7]	 H.G. Hoffman, T. Richards, B. Coda, A. Richards, S.R. Sharar. The

Illusion of Presence in Immersive Virtual Reality during an fMRI
Brain Scan. CyberPsychology and Behavior, Vol 6, Number 3, 2003.

[8]	 Matrox display expansion products.
	 http://www.matrox.com/graphics/en/products/gxm/.
	 (Web Reference).
[9]	 AMD Eyefinity, http://www.amd.com/us/products/technologies/

eyefinity/.
	 (Web Reference).
[10]	 jDome. http://www.jdome.com/
	 (Web Reference).
[11]	 TOOB. http://thinkoutofbox.com/
	 (Web reference)
[12]	 P.D. Bourke. Using a spherical mirror for projection into immersive

environments. Proceedings of the 3rd international conference on
Computer graphics and interactive techniques in Australasia and South
East Asia. pp 281-284. 2005.

[13]	 P.D. Bourke. iDome: Immersive Gaming With The Unity Game
Engine. Proceedings of the Computer Games & Allied Technology 09
(CGAT09), Research Publishing Services, ISBN: 978-981-08-3165-3,
pp 265-272, 2009.

[14]	 W. Hashimoto, H. Iwata. Ensphered Vision: Spherical immersive
display using convex mirror. Transactions of the Virtual Reality
Society of Japan, 4 (3) 497-486, 2001.

Paul Bourke is a visualisation researcher at
the University of Western Australia providing
scientific visualisation services to researchers within
university and externally. During his career he has
worked in organisations where he concentrated
on architectural, brain/medical, and astronomy
visualisation. Of particular interest are novel display
technologies and how they may be used to facilitate
insight in scientific research, increase engagement
for public outreach and education, create immersive
environments, and enhance digital entertainment.

Dalai Felinto is a Brazilian architect specialized in
computer visualization and interactive technology.
He currently works with a marine ecosystem
visualization project at the University of British
Columbia in Canada. In parallel he develops a series
of projects with the 3D open source software Blender
such as virtual walkthroughs and short animations.
His field of interest lies between architecture
visualizations and scientific art productions. In his
free time he helps to develop the Blender Game
Engine and studies as a technical artist.

pipeline described is the most straightforward approach for
realtime digital fulldome and can readily be incorporated into
other gaming engines.

Fig. 10. YoFrankie, an open source 3D game project, being played in the
iDome.

ACKNOWLEDGMENT

The authors would like to acknowledge support from
the SAT (Society for Arts and Technology, Montreal, Canada)
Metalab immersion research program as well as Benoit Bolsee
for assistance with the Blender source tree and committing
early versions of the dome support code.

REFERENCES

[1]	 Blender. http://www.blender.org/
	 (Web reference).
[2]	 E.L. Smith. Realtime graphics for visual simulation. Siggraph 98

Course Notes #20. 1998.
[3]	 P.D. Bourke. Low Cost projection Environment for Immersive

Gaming. JMM (Journal of Multimedia), ISSN: 1796-2048, Volume 3,
Issue 1, pp 41-46, 2008.

[4]	 B. Ball, C. North. The effects of peripheral vision and physical
navigation on large scale visualization. ACM International Conference
Proceedings Series; Vol 322. Proceedings of graphics interface.
ISSN:0713-5424. 2008.

[5]	 C. Cruz-Neira. Surround-screen projection based virtual reality.
Proceedings of Siggraph 93.

[6]	 M. Bailey, M. Clothier, N. Gebbie. Realtime Dome Imaging and
Interaction: Towards Immersive Design Environments. Proceedings of
ASME 2006 International Design Engineering Technical Conference,

