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Abstract—In the following we will discuss a cost effective 
immersive gaming environment and the implementation in 
Blender [1], an open source game engine. This extends traditional 
approaches to immersive gaming which tend to concentrate 
on multiple flat screens, sometimes surrounding the player, or 
cylindrical [2] displays. In the former there are unnatural gaps 
between each display due to screen framing, in both cases they 
rarely cover the 180 horizontal degree field of view and are 
even less likely to cover the vertical field of view required to 
fully engage the field of view of the human visual system. The 
solution introduced here concentrates on seamless hemispherical 
displays, planetariums in general and the iDome [3] as a specific 
case study. The methodology discussed is equally appropriate 
to other realtime 3D environments that are available in source 
code form or have a suitably powerful means of modifying the 
rendering pipeline.

Keywords—Immersion, Blender, iDome, Peripheral vision, 
Gaming, Virtual reality, Planetarium, Fisheye.

1.	 INTRODUCTION 

It is appreciated by the gaming industry that filling the 
peripheral vision of the player greatly heightens engagement 
with games played within a 3D virtual environment. This is 
not surprising since this is how we experience our real 3D 
world [4]. It is also well accepted in the virtual reality [5] 
community that peripheral vision is a key contributor to the 
sense of immersion, of “being there” [6], also referred to as 
“presence” [7]. The most straightforward way of extending 
the field of view of play is to add more screens, preferably in a 
curved arrangement around the player. This approach when it 
is to be extended beyond 2 displays requires either additional 
graphics cards or display extenders such as the Matrox dual 
and triple head [8] to go units. Matrox themselves in the past 
have released cards with three output ports (Parhelia series) 
and more recently AMD have demonstrated their 6 port 
Eyefinity [9] graphics card. The requirement on the software 
is support for multiple user defined perspective frustums, 
usually asymmetric (offaxis) frustums. It should be noted that 
using for a single wide perspective frustum is only applicable 
to multiple displays aligned in a plane.

These options however fail to really fill the human 
players field of view which extends to almost 180 degrees 
horizontally and about 120 degrees vertically. They also 
generally involve borders around the physical displays, which 
can be corrected for as if one was looking through a window 

with frames, but is still an obstruction for most 3D worlds. Car 
and flight simulators may be the exception where the display 
borders can be made to coincide with car or cockpit window 
frames.

In the virtual reality domain these shortcomings are often 
solved with either a cylindrical display or a number of flat 
walls surrounding the player, to remove the display borders 
a number of data projectors are employed. This introduces 
the complexities of multiple projectors (typically 3 or 4) and 
the requirement for edge blending for a seamless result. Such 
systems generally impose significant demands on the software 
model and still do not in general fill the players vertical field 
of view.

An observer at the center of a hemisphere onto which 
digital images are projected will have their field of view totally 
covered. This is surely the ultimate immersive environment, 
one where no display border and no imagery from the real 
world impinges on the players view of the virtual world. 
Historically the institution where this occurs is a planetarium, 
any visitor to a modern digital planetarium is well aware of the 
immersive effect. It is the implementation of this in the iDome, 
a small scale “personal planetarium”, that is the discussion of 
the remainder of this paper. A seamless hemispherical display 
that engages our whole visual field of view, and the support for 
games created using the Blender Game Engine (BGE).

It should be pointed out that the desire for hemispherical 
immersion has lead some gamers to implement solutions that 
fill the players field of view without modifying the images 
generated by the game. While they provide extremely distorted 
experiences particularly in the peripheral area, they clearly 
have some attraction and provide some heightened sense 
of immersion. Examples of these are the so called “jDome” 
[10] and “TOOB” [11] configurations. They both rely on a 
wide field of view setting in the game and use a single data 
projector, as such they have the advantage of working with 
a wide range of existing games without modification. The 
downside is the distortion that increases towards the rim of the 
hemisphere due to the use of a standard perspective projection 
rather than the required fisheye projection. In contrast, the 
goal here is to provide a distortion free experience across the 
players entire field of view. It is expected that for many game 
genres this will provide a gaming advantage since the player 
will be able to perceive events and threats in their far visual 
field, an evolutionary explanation for peripheral vision in the 
real world. 
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2.	 FISHEYE PROJECTION

The single perspective projection most games provide 
is generally inadequate for immersive systems that surround 
the gamer. In essence, a single perspective projection does 
not capture the field of view the surround display can present 
to the gamer. For a cylindrical display surface the most 
appropriate geometric projection is a portion of a cylindrical 
panorama. For a hemispherical display the most natural 
geometric projection is known as a fisheye projection. Only 
a fisheye projection captures the visual information required 
for subsequent display on a hemispherical surface, in the 
same way that a perspective projection captures the visual 
information within a rectangular frustum and suitable for 
display on a flat plane. More precisely, the fisheye projection 
traditionally used is called an equiangular fisheye, it is one of 
many possible ways of mapping a 3D vector onto a unit circle. 
An equiangular fisheye is one where the relationship between 
a vector into the scene and position on the fisheye image is as 
illustrated in figure 1. They key is the relationship between the 
radius r of the point on the 2D fisheye image and the angle f of 
the 3D vector from the camera into the scene, namely:

r = f / (A/2)

Where A is the aperture of the fisheye image, in this 
discussion A = π radians for a hemispherical fisheye. In 
a practical sense this mapping gives the most unbiased 
distribution of 3D information across the fisheye projection.

 Fig. 1. Relationship between a point on a fisheye image P(i,j) and the 
vector P(x,y,z) into the scene. The virtual camera is at the origin of this local 
coordinate system looking down the y axis and an up vector along the z axis.

3.	 DOME

The iDome, see figure 2, is a small 3m diameter personal 
hemispherical display device. The imagery on the dome 
surface is generated not with a projector and fisheye lens but 
by employing a spherical mirror [12] to scatter the projectors 
light across the wide angles required. The image distortion 
this would normally introduce is compensated for in realtime 
by predistorting the fisheye [13] content such that the result on 
the dome appears correct.

While the remainder of this discussion will focus on 
the iDome environment and it’s unique image generation 
solution it should be pointed out that the techniques discussed 
are applicable to most hemispherical dome arrangements 
[14]. This includes the two most common single projector 

projection systems, namely a data projector with a fisheye lens 
or a spherical mirror. 

4.	 BLENDER IMPLEMENTATION

“Blender is the free open source 3D content creation 
suite, available for all major operating systems under the GNU 
General Public License.” [1] Blender is often associated with 
its powerful modeling, rendering and animation capabilities, 
less well known is the realtime and gaming engine capabilities. 
This includes a full physics engine, collision detection, 
dynamic constraints, realtime shadows, GLSL shaders and so 
on. The open source nature of Blender means that it is possible 
to add support for new functionality, such as the generation of 
fisheye views required for the hemispherical dome surround 
displays.

The generation of fisheye images involves the well 
understood technique of rendering to cubic maps. That is, 
rendering multiple 90 degree field of view (horizontally and 
vertically) perspective projections that cover the required field 
of view of the display surface, these images are then processed 
so as to produce the fisheye projection. The most efficient 
arrangement is to use 4 renderings with frustums passing 
though the vertices of a unit cube centred at the camera, the 
camera is pointed towards the midpoint of the edge of the 
cube, see figure 3. The fisheye image is formed by applying 
the 4 renderings as textures to 4 suitably constructed meshes, 
the vertices and associated texture coordinates of which are 
designed so as to form the desired fisheye projection.

5.	 MESH GENERATION

The formation of the meshes that will form the fisheye 
image from the 4 cubic face rendered images has been added 
to the Blender Game Engine and will appear as a built-in 
capability from version 2.49 onwards. There are three distinct 
stages to the creation of these meshes, these are now outlined 
and illustrated in figure 4a, 4b, 4c. 

A.	 Stage 1: Tessellation

	 Tessellation of the 4 faces of the cube, see figure 
4a. A triangular mesh tessellation is chosen where 
each edge of a triangle is bisected to form 4 smaller 
triangles. Initially the square left and right cube 
faces are split into two right angle triangles. Only 
the portions of the top and bottom faces that are 
actually used are tessellated. On every iteration of 
the tessellation the number of triangles increases 
by a factor of 3. At each stage of the tessellation 
the texture coordinates of each vertex is calculated 
as the average of the texture coordinates of the split 
edge. The texture coordinates of the right face are 
shown in the first two tessellation iterations in figure 
4a. These texture coordinates are associated with the 
rendering of the frustum corresponding to the right 
face of the cube, as such they are preserved during 
any subsequent modification to the mesh. The degree 
of tessellation is a compromise between the quality 
of the warping (the more smaller triangles the better) 
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and performance (the more triangles the higher 
performance penalty). The tessellation starts with 6 
triangles, in general 4 iterations have been employed 
giving a total mesh triangle count of 486.

Fig. 2. The iDome, a 3m diameter truncated hemispherical dome in profile 
and photographed on site. An important issue with a fisheye lens system is 
that it occupies the middle of the dome, this is region best occupied by the 
player. In contrast, he spherical mirror projection positioning frees up the 

entrance to the dome significantly.

Fig. 3. Camera coordinate system with respect to the 4 faces of the cube 
that define the 4 rendering frustums. This is the minimum number of cube 

faces required in order to capture the field of view required for a 180 degree 
fisheye.

B.	 Stage 2: Inflation

	 The mesh from step 1 is inflated to form a hemisphere, 
see figure 5. This modifies the vertices but retains 
the texture coordinates. Each vertex in this inflated 
hemisphere can be considered a unit vector from the 
camera into the 3D world, the same vector as the 
corresponding vertex in the tessellated cube faces in 
figure 4.

Fig. 4. Iterative tessellation of the faces of the cube that define the 4 
perspective view frustums. Texture coordinates for the right cube face shown 

in the first two iterations.

 

Fig. 5. Inflation of the cube vertices to form a hemisphere while retaining 
the texture coordinates.

 

Fig. 6. Flattening the hemisphere according to the equiangular fisheye 
equations. 

C.	 Stage 3: Flatten

	 The final stage involves flattening the hemispherical 
mesh according to the equiangular fisheye projection 
equations. This modifies the vertices so they lie in 
the x-z plane (see figure 1) and the (u,v) coordinates 
provide the mapping from the cube face images. The 
normalised image coordinates on the interval (-1,1) 
are given by the following:
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x = r cos(θ)
z = r sin(θ)

where, for a 180 degree fisheye
r = j / (p/2)

and
j = atan2(√(P2

x + P2
z), Py)

θ = atan2(Pz,Px)

	 where atan2() is the standard math library function 
for calculating angles on the range –π to π.

D.	 Fisheye Warping

	 If a data projector with a fisheye lens is employed 
then there is nothing left to do besides rendering 
the above 4 textured meshes using an orthographic 
camera. For a projection system based upon the 
spherical mirror an additional pass applies the image 
from the orthographic camera as a texture onto 
another mesh that performs the warping required. 
This second mesh is then rendered using another 
orthographic camera to produce the image finally 
sent to the data projector. 

	 The vertices and texture coordinates of this warping 
mesh are created with external software and saved in 
a plain text file. The format of this file is quite simple, 
a 2 line header describing the type and dimensions of 
the mesh followed by the data for each vertex. This 
file format has been standardised by the author for 
describing warping for the spherical mirror projection 
and as such has been widely adopted. This mesh is in 
general different for each physical installation since 
it depends on the geometry of the hardware, that is, 
the projector-mirror-dome positions, the optics of the 
data projector, the size of the dome and mirror, and 
so on. The appearance of the mesh used for the HD 
(16x9) projector of the iDome is illustrated in figure 
4d. While not shown here, the vertices of the mesh 
also contain a multiplicative intensity value that can 
be used to compensate for brightness variation across 
the dome arising from different light path lengths.

 

Fig. 7. The appearance of the mesh onto which the fisheye image is applied 
as a texture in order to create a warped fisheye for the iDome configuration 

(HD 1920x1080 data projector).

For a fisheye based data projection system a 5 pass 
rendering pipeline is used, that is, 4 cubic render-to-textures 
passes of the 3D world and a final orthographic rendering 

of the mesh that creates the fisheye image. For a spherical 
mirror there is an additional render-to-texture to capture the 
orthographic rendering of the fisheye textured mesh and the 
result applied to the warping mesh. The overall pipeline for a 
particular car racing game (“Club Silo” from Luma Studio) is 
illustrated in figure 5. The game being played in the iDome is 
shown in figure 6.

 

Fig. 8. Pipeline showing the various render passes required to form a fisheye 
image or the warped equivalent from the 4 cube maps.

 
Fig. 9. iDome and car racing game example. While the warped image sent 
to the data projector (figure 5) appears distorted, the imagery is perfectly 

correct on the dome surface. 

VI.	 CONCLUSION

We have demonstrated how fisheye and warped fisheye 
projections can be created using the Blender Game Engine. 
Such projections are required for fisheye lens or spherical 
mirror projection into hemispherical displays using a single 
data projector, the most affordable option for gaming. The 
benefit of an open source project such as Blender is that 
any game written in that software can be readily converted 
to support this unique immersive display, for example, the 
YoFrankie game shown in figure 7. The multipass rendering 
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pipeline described is the most straightforward approach for 
realtime digital fulldome and can readily be incorporated into 
other gaming engines.

 

Fig. 10. YoFrankie, an open source 3D game project, being played in the 
iDome.
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