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Abstract—Machine learning is now widely studied as the 
basis for artificial intelligence systems within computer games. 
Most existing work focuses on methods for learning static 
expert systems, typically emphasizing candidate selection. This 
paper extends this work by exploring the use of continuous and 
reinforcement learning techniques to develop fully-adaptive 
game AI for first-person shooter bots. We begin by outlining a 
framework for learning static control models for tanks within 
the game BZFlag, then extend that framework using continuous 
learning techniques that allow computer controlled tanks to adapt 
to the game style of other players, extending overall playability by 
thwarting attempts to infer the underlying AI. We further show 
how reinforcement learning can be used to create bots that learn 
how to play based solely through trial and error, providing game 
engineers with a practical means to produce large numbers of 
bots, each with individual intelligences and unique behaviours; 
all from a single initial AI model.

Index Terms—reinforcement learning, game AI, adaptive 
control

1.	 INTRODUCTION

Machine learning approaches to non-player character 
(NPC) control have long been cited as the future of game AI 
(Millington 2006, Palmer 2002). Many methods have been 
demonstrated to produce reasonably competent static models 
using neural nets (Thurau et al. 2003, Dawes and Hall 2005), 
candidate selection decision models (Smith et al. 2007, Thurau 
et al. 2004), and dynamic scripting (Spronck and Jaap van den 
Herik 2004), to name but a few. This paper contributes to this 
area by describing methods to create continuously adapting 
NPC control models within a first-person shooter (FPS) game. 
Specifically, we detail experiments of two kinds: a continuous 
learning approach for creating non-static game AI bots, and 
a reinforcement learning approach to making bots that by 
themselves develop individual behaviour models through trial 
and error, starting from a relatively naive state. The game used 
for this particular study is BZFlag 2.0.10—a free, open source, 
cross-platform, multiplayer 3D tank battle game widely used 
in real-time competitions.

Existing standard paradigms for NPC control are 
typically based on either scripting (where bot behaviour is 

dictated without regard to the current game state) or rule-sets 
(where the NPC executes one of a number of alternative actions 
or plans based on current conditions during game play). Both 
approaches rely on a developer’s ability to design and codify 
a priori NPC behaviours that deliver satisfying experiences 
for all gamers—a distinctly challenging and time-consuming 
task equivalent to expert system development. Even when 
successful, such static models often succumb to either direct or 
indirect inference of their underlying algorithm by experienced 
gamers, who may thereafter take advantage of predictability 
in bot behaviours, possibly undermining continued enjoyment 
of the game. The study reported here looks to circumvent this 
problem by designing bots that continuously adapt in response 
to game events, allowing them to improve with experience and 
exhibit some amount of on-going unpredictability that might 
enhance or extend overall game-play and user enjoyment.

For epistemological reasons, we restrict the set of 
features made available to the bot during learning to just 
those also available to a human player—such that cheating 
is not allowed. Moreover, we look only at machine learning 
methods that can yield human readable models (e.g. no neural 
networks) so that we can actually see a characterization of 
what the bot has learned at any given time. This also implies 
a possible practical benefit of allowing game engineers to 
pre-train bots for a time, then inspect the model and make 
manual changes that might help a bot re-focus toward specific 
elements of the environment or its experience (with the option 
to resume learning afterward). 

One major benefit specifically offered by a reinforcement 
learning approach is that it presents a tool to help game 
developers more easily create individual AI systems for 
a very large number of bots, such that each bot evolves its 
own distinct playing characteristics. That is, as commercial 
3D “virtual world” immersion games continue to grow in 
complexity and detail (e.g. GTA-IV, Modern Warfare 2, etc), 
the overhead entailed in developing satisfactory static AI 
models for a great many different bots and bot-classes becomes 
onerous. Reinforcement learning makes it possible to create 
any number of individual bots whose initial state is effectively 
one of zero-knowledge. These bots can then play each other 
(at CPU speed) and acquire their own distinct behaviours 
through trial-and-error. And, of course, any adaptive models 
can ship with the game, meaning bot learning continues for 
the lifetime of the product.

Three general approaches were trialed and reported 
here. The first is a basic proof-of-concept attempt to infer 
a static model that can play BZFlag with satisfactory 
competence, confirming that machine learning is a viable 
approach to BZFlag and suggesting which learning schemes 
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are perhaps best to pursue for adaptive modeling. Following 
this, continuous learning is employed to show how adaptive 
behaviour modeling can be realized with simple modifications 
to static model induction. And third, reinforcement learning is 
demonstrated as a means to create bots that start with no initial 
experience and then gradually learn better and better ways to 
achieve their goals.

2.	 GAME ENVIRONMENT

The basic game-play of BZFlag is to have two or more 
tanks whose objective is to shoot each other. BZFlag uses a 
client-server architecture, though both the client and server 
programs can run on the same machine. The client is a ‘fat 
client’, whereby a large amount of processing is done in 
the client program while the server program mainly handles 
synchronization of the game state between multiple clients. 
The learning component is attached to a bot client as an 
external process so that induction can be carried out as a 
separate thread.

The world configuration refers to the characteristics of 
the virtual world created by the server, and includes aspects 
such as size, obstacles, tank abilities, flags, and game-play 
modes. Due to the large number of parameters that can be set 
in BZFlag, only a brief overview of the capabilities is given 
here.

World size is measured in ‘BZFlag units’ which have 
no real-world counterpart (though it is suggested that if the 
tank was life-sized one BZFlag unit would be approximately 
one meter). The world size is set for the X and Y coordinate 
planes, but a constant in the Z axis. The coordinates on all 
three axes can be positive or negative, so a world with size 
200x200 is effectively 400x400 units on the X-Y plane with 
coordinate values ranging from -200 to +200. 

Games in BZFlag are one of two varieties; death-match 
or capture-the-flag. Our investigation is restricted to death-
matches, which are simply free-for-all games where every 
tank is trying to shoot any other tank. BZFlag comes with 
two built-in computerized players. We refer to them here as 
basic-pilot and autopilot. Both use rule-sets to determine their 
behaviour, though their rule-sets are different. Basic-pilot is 
the standard computer opponent during single player games. 
It has simple dodging code but overall performs poorly and 
is easily beaten by a human. Autopilot exists to take over a 
human player’s tank when an in-match break is needed. Its 
performance is generally better than basic-pilot in that it easily 
beats basic-pilot in a one-on-one match; but its simple, fixed 
rule-set creates predictable behaviour that renders it easily 
beaten by an intermediate human player.

 

3.	 LEARNING ENVIRONMENT

This study aims to determine if a computer controlled 
opponent can adapt to a human player’s style of game-play 
using the same level of information and control that the human 
player is given (i.e. no cheating). We explore conventional 
supervised learning schemes and reinforcement learning. The 

basic process of supervised learning is to provide the learner 
with a set of training instances (recorded during some prior 
play), where each instance is a vector of game conditions 
and an action taken under those conditions. The induction 
algorithm seeks a terse characterization of those instances (e.g. 
a decision tree) such that the inferred model is subsequently 
able to choose an effective action in future and potentially 
novel circumstances. 

The well-known open-source WEKA workbench 
includes just about every learning scheme in the public 
domain and is employed for our experiments, both for static 
model induction and continuous learning. A comprehensive 
description of WEKA and the algorithms included can be 
found in Witten & Frank [2005]. Reinforcement learning (RL) 
is a method that attempts to match a situation (world state) to 
an action so as to maximize some reward function. Unlike in 
supervised learning, the learner (agent) is not explicitly told 
the right action to take at any time but rather learns through 
trial and error (i.e. no training examples). The lack of known 
‘correct’ examples often results in slower learning than for 
supervised schemes, but in principle, given sufficient learning 
time, RL is capable of exploring the entire search space and so 
is able to find the optimum solution (in the limit). 

The underlying approach utilizes state-action pairs, 
where [notionally] all possible combinations of states and 
actions are kept in memory along with the accumulated 
reward for each state-action pair based upon what happened 
whenever this action was taken from this state in the past. 
Several reinforcement learning schemes exist to choose 
from, and we utilize PIQLE (Platform Implementing Q-
Learning) in this study. PIQLE is a Java framework designed 
to separate problems from algorithms, allowing researchers to 
test new algorithms on standard problems easily. It includes 
implementations of various RL algorithms (generally those 
described in Sutton and Barto, 1998), but only the state-action 
pair algorithm was trialed. It stores all combinations of states 
and actions along with the maximum expected reward for 
each, but uses hashing to reduce the memory requirement so 
that only observed state-action pairs are stored. This approach 
works well on small or simplified problems such as BZFlag, 
but has difficulty scaling to more complex domains. That is, 
memory requirements increase exponentially with the number 
of states and actions, and all state-action pairs, in principle, 
must be visited repeatedly in order for the algorithm to 
converge. PIQLE allows the number of actions available to be 
set on a state-by-state basis, which is in practice sufficient to 
keep requirements manageable.

4.	 CONTROLS AND ATTRIBUTES

BZFlag allows players to control a tank inside the  
virtual world created by the BZFlag server. For this study, 
overall control is separated into three distinct classes; 
speed, shooting, and rotation. Models are inferred for each 
class and combined together to form a complete bot AI. 
Such separation makes it possible to focus on each decision 
process independently, simplifying the learning objectives 
without undermining the overall goal of having adaptive bot 
behaviour.
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Speed is the tank’s velocity along the line it is facing 
and is adjusted by setting a floating-point number representing 
the fraction of the maximum possible speed. This can be set 
to a maximum of 1.0 and a minimum of -0.5, with 1.0 being 
full speed ahead and -0.5 being full speed backwards (the 
tank can only go half as fast in reverse). Changes to the speed 
happen virtually instantaneously (that is to say, to the user the 
acceleration appears to happen instantly).

 Shooting is the ability to fire a projectile from the tank. 
Once fired the projectile continues along a straight-line path 
until it either hits something (an obstacle, tank, or wall) or 
reaches its maximum range. A reloading mechanism prohibits 
the tank from always being able to fire, unlike the speed and 
rotation controls that are always available. The shooting 
control is also different from speed and rotation in that it is a 
binary variable and thus can simply be toggled as needed.

Rotation is the tank’s orientation in the virtual world. As 
with speed this is adjusted by setting a floating-point number 
representing the fraction of the maximum possible turn speed. 
It has a maximum of 1.0 and a minimum of -1.0, where 1.0 
is turning as fast as possible to the left and -1.0 is turning as 
fast as possible to the right. Unlike speed however, turning 
does not happen instantaneously—it takes time for the tank to 
rotate; approximately 3 seconds to turn 360 degrees.

The training data is gathered from a one-on-one match 
between the autopilot and the default robot player. The 
decisions made by the autopilot player are output at each time-
step of the game. We concede that the maximum level of skill 
learnable by the bot is potentially limited by the skill of its 
teacher, and that it would therefore be preferable to learn from 
expert humans than from either the autopilot or default robot. 
However, gathering training data from people is somewhat 
harder; and unnecessary given that we are only demonstrating 
the overall approach in this paper.

Table 1 itemizes the attributes in the training data. 
Position attributes (MyPosition and EnemyPosition) are the 
absolute position of a tank (autopilot or opponent) on the 
world axes. The X and Y coordinates have a range of -200 to 
+200 in our experiments, the Z coordinates have a minimum 
value of 0 and a maximum of 30 (n.b. there is a server option 
that allows tanks to jump on top of obstacles in the world). 
Velocity attributes (MyVelocity and EnemyVelocity) are the 
velocities of the tank along the three axes, as given by the 
attribute’s annotation. These have a range of -25 to +25. 
EnemyDistance is the straight-line distance to the opponent’s 
tank in BZFlag units. In the world configuration used here, this 
has a minimum value of 0 and a maximum of approximately 
565 (i.e. maximum Euclidian distance on the diagonal). 
AngleDifference is the difference in angle between the tank’s 
current orientation and the orientation required for it to face 
straight at the opponent. This is measured in radians and so has 
a minimum value of 0 and a maximum of approximately 3.14 
(just under 180 degrees). isObscured is a Boolean value that 
is true if the opponent’s tank is obscured by an obstacle. The 
EnemyDistance, AngleDifference, and isObscured attributes 
are all generated by functions that are built-in to the autopilot’s 
logic. The attributes isObscured and Fire are Boolean values 
and all the rest are floating-point values.

5.	 INITIAL STATIC MODELS

Initial static learning was attempted first as proof-of-
concept that supervised learning was capable of achieving 
satisfactory bot behaviour in BZFlag, and to gain insights 
as to which learning schemes worked best. Separate models 
were learned to independently control tank speed, the decision 
to shoot, and the angle of rotation (i.e. direction). An initial 
dataset of 150,000 training instances was generated, then 
sampled to obtain random stratified subsets of 1500 examples 
(i.e. equal numbers of positive and negative instances). Ten-
fold cross-validation was used to train and evaluate a wide 
range of learning schemes available in WEKA, and results 
from 27 of the more commonly known (and best performing) 
ones are outlined below.

TABLE I
ATTRIBUTES AND CLASSES

            Attribute                             Description

MyPositionX - The position of the autopilot’s tank 
on the X axis

MyPositionY - The position of the autopilot’s tank 
on the Y axis

MyPositionZ - The position of the autopilot’s tank 
on the Z axis

MyVelocityX - The velocity of the autopilot’s tank 
along the X axis

MyVelocityY - The velocity of the autopilot’s tank 
along the Y axis

MyVelocityZ - The velocity of the autopilot’s tank 
along the Z axis

EnemyPositionX - The position of the opponent’s tank 
on the X axis

EnemyPositionY - The position of the opponent’s tank 
on the Y axis

EnemyPositionZ - The position of the opponent’s tank 
on the Z axis

EnemyVelocityX - The velocity of the opponent’s tank 
along the X axis

EnemyVelocityY - The velocity of the opponent’s tank 
along the Y axis

EnemyVelocityZ - The velocity of the opponent’s tank 
along the Z axis

EnemyDistance - The straight-line distance to the 
opponent’s tank.

AngleDifference - How far the tank must rotate to be 
facing the opponent tank

isObscured - true if opponent’s tank is obscured, 
false otherwise.

Fire (class) - true when a shot is fired, false
otherwise.

Speed  (class) 1.0 = full speed ahead, 0 = 
stopped,-0.5 = max. reverse speed

Rotation (class) 1.0 = rotate as fast as possible left, 
-1.0 = as fast as possible right
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Fig. 1. Classification accuracy for shooting models.

Shooting: The results for the shooting model are 
shown in Figure 1. Note that ZeroR (i.e. baseline naïve 
classifier) scores close to 50% as expected, and the majority 
of the classifiers score over 90%. This suggests that either the 
problem of controlling tank shooting is a relatively simple 
one, or over-fitting of the data has occurred. To test for over-
fitting, one of the classifiers was inserted into the autopilot 
bot while retaining the original bot code for controlling speed 
and rotation. The PART classifier was selected because it is a 
rule-based learner and therefore the model is easily integrated 
into the autopilot’s native IF...THEN rules, and because it 
has the smallest and least complex set of rules of all the rule-
based learners. This modified autopilot bot was pitted against 
the default robot player in a one-on-one best-of-a-hundred 
death match, with the goal of seeing how well it did in novel 
situations. Repeated matches produced more or less even 
performance, suggesting the inferred shooting model was not 
over-fitting.

Speed control is more complex than shooting because 
a floating point numeric value must be predicted, rather than 
a binary value. Very few classification algorithms are able to 
predict numeric values, and the majority of the classifiers in 
WEKA must have a nominal class. As per standard procedure, 
we discretized the class value (i.e. the speed). Recall that 
changes to tank speed happen almost instantaneously. This 
greatly simplifies descretization since virtually all values in 
the dataset are either 1.0 (full speed ahead), 0.0 (stopped), or -
0.5 (full speed backwards). This was made effectively uniform 
for all instances using the Discretize filter available in WEKA 
(using equal-width binning), such that the bins generated 
by the filter are; < -0.315415, -0.315415 to 0.342293, and > 
0.342293.

Once again, ten-fold cross-validation was used to 
evaluate many different classifiers in WEKA. Unfortunately 
space limitations preclude including the analogous graph here 
(though all results will be presented at the conference). Many 
of the classifiers scored well over 90%, with JRip performing at 
nearly 99%. As with shooting, an empirical test was devised to 
guard against possible over-fitting by inserting the JRip model 
into the autopilot bot (leaving the rest of the original code in 
place) and having it compete against the default robot player 
in a series of best-out-of-100 death matches. The modified bot 
averaged 43 kills per match, indicating a successful model had 
been learned to work in novel situations.

Rotation, like speed, is a numeric value so must be 
discretized for the learning schemes that require a nominal 

class. A crude discretization might place each value into one of 
the three groups; -1.0 (turn left) 0.0 (go straight) and 1.0 (turn 
right). However, because rotation values in the training data 
are more evenly spread than the speed values, we empirically 
settled on hand-set bins of < -0.01, -0.01 – 0.01, and > 0.01. 
A broad array of learning schemes was once again evaluated 
under ten-fold cross-validation. Many decision tree models 
performed well in experimentation (but, once again, space 
limitations preclude printing them here), with RandomForest 
winning by a small margin at around 98% accuracy. Empirical 
tests for over-fitting through the one-on-one death-matches 
saw RandomForest score an average of 41 kills. REPTree 
actually scored better in similar tests (averaging 46 kills 
per match), but RandomForest generally performed better 
in subsequent death-match tests with bots that had all three 
controls (shooting, speed and rotation) operated by inferred 
models.

6.	 CONTINUOUS LEARNING MODELS

The preceding experiments establish that satisfactory 
control mechanisms can be successfully learned. But because 
such models are inferred from a finite set of example instances, 
their maximum performance tends to be inherently limited 
(assuming the training sample is not a characteristic set). One 
way to overcome this is to allow the learning algorithm to 
continue to consider new sample instances (without limit) as 
it plays. Each instance is annotated with a feature that records 
the associated outcome, using +1 if a hit is scored on the 
opponent, -1 if the bot is itself hit, -0.1 if the bot is reloading 
(to slightly penalize just continuously shooting whenever it is 
possible to do so), and 0 all other times. All decisions made 
by the bot and those made by the opponent are sent to the 
classifiers, which update their models for shooting, speed and 
rotation accordingly. If memory (or update time) becomes an 
issue, older instances (or poorly classified ones) can be deleted 
from the training set, such that the models are always inferred 
from the most recent (or most successful) experiences. 

The process, shown in Figure 2, is as follows. The bot 
sends world information from BZFlag to the WEKA-Server 
and awaits a response. All instances received by WEKA-
Server are sent to ClassifierBuilder. ClassifierBuilder reruns 
the learning algorithm and sends the updated model to WEKA-
Server, which then issues control instructions to the bot. 

Fig. 2. Communication topology for all continuous learning models.

In principle, any ML algorithm can be used to build 
the classifier. A set of experiments was devised to determine 
which combination of algorithms (i.e. one each for the rotation, 
shooting and speed models) showed the best overall trend for 
improving over time. In each test, the learning bot played the 
robot-pilot in a death-match until the total kill count reached 
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300 (chosen arbitrarily). After every ten kills (called a 10-
kill block), the number of times the bot scored a kill was 
recorded, creating 30 data points per match. The ability for 
each algorithm to improve is measured by plotting these data 
points and comparing the slope of the linear trend lines.

Experiments with a many combinations of learning 
algorithms indicated that DecisionTable was clearly the best 
for controlling rotation, improving steadily in every iteration. 
OneR (a one-level decision tree) always gave the best control 
results for shooting (although REPTree was close), indicating 
that the decision of whether to shoot or not is probably quite 
trivial. Two algorithms, JRip and RandomTree, showed the 
best trends for improvement when controlling speed, and this 
can be seen in Figure 3.

Fig. 3. Trends for two continuous learning bots.

Although RandomTree ultimately achieved a 
higher average score, JRip showed the best trend towards 
improvement. 

We note that we were unable to get a combination of 
models to match or exceed the success rate of the robot-pilot. 
This possibly suggested that the models are at best able to 
converge on the playing ability of their teacher, which was 
robot-pilot itself. To breach this limit, the bot must be able to 
explore new behaviours outside of the examples provided by 
its teacher. Such learning by trial-and-error is the domain of 
reinforcement learning, discussed in the next section.

7.	 REINFORCEMENT LEARNING

PIQLE utilizes a so-called Q-learning framework that 
randomly explores (in a biased way) the behavior space, 
recording the outcome of chosen actions with some kind of 
reward or penalty (where penalty is typically just a lesser or 
negative reward). PIQLE creates a multidimensional table 
(by hashing to reduce memory demands) where each cell is 
indexed by a state-action pair and maintains a record of the 
total reward observed when that action was previously taken 
in that state. Actions are chosen using random proportionate 
selection over possible actions from the current state based on 
the reward each has received. That is to say, selection is biased 
towards successful action but never precludes any possible 
action.

At least two reviews are required for every paper 
submitted. For conference-related papers, the decision to 
accept or reject a paper is made by the conference editors and 
publications committee; the recommendations of the referees 
are advisory only. Undecipherable English is a valid reason for 
rejection. Authors of rejected papers may revise and resubmit 
them to the TRANSACTIONS as regular papers, whereupon 
they will be reviewed by two new referees.

Table 2 shows the values used to represent world state 
for the PIQLE agent. This is a much smaller set of attributes 
than those used previously but should be the minimum data 
required to accurately distinguish world states. However, using 
the raw values creates too large a state-action pair space for 
the Q-learning framework to operate effectively, so substantial 
rounding is necessary. Specifically, the RelativePosition 
attributes are rounded off to the nearest 40, giving 21 possible 
values using the world configuration described earlier. The 
AngleDifference attribute is rounded to the nearest 0.5, giving 
a range of 12 values (0 to +6.0). FiringStatus is an integer 
value with only three possible values so is left unchanged.

Figure 4 shows a graph plotting PIQLE’s success 
rate for 1000-kill blocks over a match that terminates after 
100,000 kills. Although the average performance does not 

TABLE II
ATTRIBUTES AND CLASSES FOR REINFORCEMENT 

LEARNING

            Attribute                             Description

RelativePositionX The position of the opponent’s tank 
on the X axis, relative to the 
autopilot’s tank

RelativePositionY The position of the opponent’s tank 
on the Y axis, relative to the 
autopilot’s tank

AngleDifference The difference between the current 
rotation of the agent’s tank, and the 
rotation which would point the 
agent’s tank straight at the opponent’s 
tank. (How far the agent’s tank must 
rotate to be facing the opponent tank)

FiringStatus Integer value, tank can only fire when 
value is 1 (meaning ‘ready’)
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reach 50%, every test we performed produced a positive trend 
that continued until memory was exhausted. The implication 
is that bot performance could conceivably continue to improve 
until above average performance is attained. Indeed, from a 
practical perspective, the fundamental problem may turn out 
to be one of inhibiting the models from getting too good.

Fig. 4. Positive trend by reinforcement learning.

8.	 CONCLUSION

We have shown that first-person shooter bots can be 
created using machine learning methods. More importantly, we 
have demonstrated how continuous learning can be employed to 
created bots that continuously adapt their behavior in response 
to their experiences, allowing them to change their actions and 
responses over time and toward different players. We have 
also shown how reinforcement learning can be applied to first-
person shooter games as a means to make bots that learn how 
to play a game all by themselves, demonstrating a technology 
of considerable practical benefit for game engineers in that an 
unlimited number of bots can now be developed, each with 
independent and continually adapting behaviours, without the 
need to code expert game bots at the outset. Overall, these 
methods can both improve game development and extend 
gameplay experiences for gamers.
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