
�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

6

[4] M. Dawes and R. Hall, “Towards using first-person shooter computer
games as an artificial intelligence testbed,” in Knowledge-Based Intelli-
gent Information and Engineering Systems, 2005.

[5] K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol,
K. S. Barber, J. S. Rosenschein, L. Vercouter, and M. Voss, “A speci-
fication of the agent reputation and trust (art) testbed: experimentation
and competition for trust in agent societies,” in AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous agents and
multiagent systems. New York, NY, USA: ACM, 2005, pp. 512–518.

[6] “Ogre Website,” http://ogre3d.org/, 2009.
[7] P. Turner, “CEGUI,” http://www.cegui.org.uk/wiki/index.php/Main Page,

2009.
[8] E. Szoka, “Earth Sculptor,” http://www.earthsculptor.com/, 2009.
[9] Autodesk, “Maya,” http://usa.autodesk.com/adsk/, 2009.

Hollie Boudreaux received the B.S. degree (summa
cum laude) in computer science from Nicholls State
University, Thibodaux, LA in 2004, and the M.S. de-
gree in computer science in 2007 from the University
of Louisiana at Lafayette, Lafayette, LA, where she
is currently working toward the Ph.D. degree. Her
research interests include computer graphics, video
game design and development, artificial intelligence,
and multiagent systems.

Jim Etheredge received the M.S. degree in com-
puter science from the University of Southwestern
Louisiana in 1986 and the Ph.D. in computer science
from the University of Southwestern Louisiana in
1989. He is currently an associate professor of
computer science at the University of Louisiana at
Lafayette, Lafayette, LA and the coordinator for the
Video Game Design and Development concentration
of the undergraduate computer science curriculum.
His research and teaching interests include video
game design and development, artificial intelligence,

multiagent game systems, and database management systems.

Ashok Kumar is an Assistant Professor in the
Department of Computer Science at the University
of Louisiana at Lafayette. Dr. Kumar obtained his
Ph.D. in 1999 and worked for four years in industry
before joining academia full time. He has over
fifty publications in refereed journals, conferences,
and book chapters. He has served on the program
committees of several conferences.

Abstract—Machine learning is now widely studied as the
basis for artificial intelligence systems within computer games.
Most existing work focuses on methods for learning static
expert systems, typically emphasizing candidate selection. This
paper extends this work by exploring the use of continuous and
reinforcement learning techniques to develop fully-adaptive
game AI for first-person shooter bots. We begin by outlining a
framework for learning static control models for tanks within
the game BZFlag, then extend that framework using continuous
learning techniques that allow computer controlled tanks to adapt
to the game style of other players, extending overall playability by
thwarting attempts to infer the underlying AI. We further show
how reinforcement learning can be used to create bots that learn
how to play based solely through trial and error, providing game
engineers with a practical means to produce large numbers of
bots, each with individual intelligences and unique behaviours;
all from a single initial AI model.

Index Terms—reinforcement learning, game AI, adaptive
control

1.	 INTRODUCTION

Machine learning approaches to non-player character
(NPC) control have long been cited as the future of game AI
(Millington 2006, Palmer 2002). Many methods have been
demonstrated to produce reasonably competent static models
using neural nets (Thurau et al. 2003, Dawes and Hall 2005),
candidate selection decision models (Smith et al. 2007, Thurau
et al. 2004), and dynamic scripting (Spronck and Jaap van den
Herik 2004), to name but a few. This paper contributes to this
area by describing methods to create continuously adapting
NPC control models within a first-person shooter (FPS) game.
Specifically, we detail experiments of two kinds: a continuous
learning approach for creating non-static game AI bots, and
a reinforcement learning approach to making bots that by
themselves develop individual behaviour models through trial
and error, starting from a relatively naive state. The game used
for this particular study is BZFlag 2.0.10—a free, open source,
cross-platform, multiplayer 3D tank battle game widely used
in real-time competitions.

Existing standard paradigms for NPC control are
typically based on either scripting (where bot behaviour is

dictated without regard to the current game state) or rule-sets
(where the NPC executes one of a number of alternative actions
or plans based on current conditions during game play). Both
approaches rely on a developer’s ability to design and codify
a priori NPC behaviours that deliver satisfying experiences
for all gamers—a distinctly challenging and time-consuming
task equivalent to expert system development. Even when
successful, such static models often succumb to either direct or
indirect inference of their underlying algorithm by experienced
gamers, who may thereafter take advantage of predictability
in bot behaviours, possibly undermining continued enjoyment
of the game. The study reported here looks to circumvent this
problem by designing bots that continuously adapt in response
to game events, allowing them to improve with experience and
exhibit some amount of on-going unpredictability that might
enhance or extend overall game-play and user enjoyment.

For epistemological reasons, we restrict the set of
features made available to the bot during learning to just
those also available to a human player—such that cheating
is not allowed. Moreover, we look only at machine learning
methods that can yield human readable models (e.g. no neural
networks) so that we can actually see a characterization of
what the bot has learned at any given time. This also implies
a possible practical benefit of allowing game engineers to
pre-train bots for a time, then inspect the model and make
manual changes that might help a bot re-focus toward specific
elements of the environment or its experience (with the option
to resume learning afterward).

One major benefit specifically offered by a reinforcement
learning approach is that it presents a tool to help game
developers more easily create individual AI systems for
a very large number of bots, such that each bot evolves its
own distinct playing characteristics. That is, as commercial
3D “virtual world” immersion games continue to grow in
complexity and detail (e.g. GTA-IV, Modern Warfare 2, etc),
the overhead entailed in developing satisfactory static AI
models for a great many different bots and bot-classes becomes
onerous. Reinforcement learning makes it possible to create
any number of individual bots whose initial state is effectively
one of zero-knowledge. These bots can then play each other
(at CPU speed) and acquire their own distinct behaviours
through trial-and-error. And, of course, any adaptive models
can ship with the game, meaning bot learning continues for
the lifetime of the product.

Three general approaches were trialed and reported
here. The first is a basic proof-of-concept attempt to infer
a static model that can play BZFlag with satisfactory
competence, confirming that machine learning is a viable
approach to BZFlag and suggesting which learning schemes

Continuous and Reinforcement Learning
Methods for First-Person Shooter Games

Tony C. Smith and Jonathan Miles

	 Manuscript received June 30, 2010.
	 Tony C. Smith and Jonathan Miles are with the Department of
Computer Science, University of Waikato, Hamilton, New Zealand (phone:
+64-7-838-4453; fax: +64-7-858-5095; e-mail: tcs@cs.waikato.ac.nz).

DOI: 10.5176_2010-2283_1.1.02

�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

are perhaps best to pursue for adaptive modeling. Following
this, continuous learning is employed to show how adaptive
behaviour modeling can be realized with simple modifications
to static model induction. And third, reinforcement learning is
demonstrated as a means to create bots that start with no initial
experience and then gradually learn better and better ways to
achieve their goals.

2.	 GAME ENVIRONMENT

The basic game-play of BZFlag is to have two or more
tanks whose objective is to shoot each other. BZFlag uses a
client-server architecture, though both the client and server
programs can run on the same machine. The client is a ‘fat
client’, whereby a large amount of processing is done in
the client program while the server program mainly handles
synchronization of the game state between multiple clients.
The learning component is attached to a bot client as an
external process so that induction can be carried out as a
separate thread.

The world configuration refers to the characteristics of
the virtual world created by the server, and includes aspects
such as size, obstacles, tank abilities, flags, and game-play
modes. Due to the large number of parameters that can be set
in BZFlag, only a brief overview of the capabilities is given
here.

World size is measured in ‘BZFlag units’ which have
no real-world counterpart (though it is suggested that if the
tank was life-sized one BZFlag unit would be approximately
one meter). The world size is set for the X and Y coordinate
planes, but a constant in the Z axis. The coordinates on all
three axes can be positive or negative, so a world with size
200x200 is effectively 400x400 units on the X-Y plane with
coordinate values ranging from -200 to +200.

Games in BZFlag are one of two varieties; death-match
or capture-the-flag. Our investigation is restricted to death-
matches, which are simply free-for-all games where every
tank is trying to shoot any other tank. BZFlag comes with
two built-in computerized players. We refer to them here as
basic-pilot and autopilot. Both use rule-sets to determine their
behaviour, though their rule-sets are different. Basic-pilot is
the standard computer opponent during single player games.
It has simple dodging code but overall performs poorly and
is easily beaten by a human. Autopilot exists to take over a
human player’s tank when an in-match break is needed. Its
performance is generally better than basic-pilot in that it easily
beats basic-pilot in a one-on-one match; but its simple, fixed
rule-set creates predictable behaviour that renders it easily
beaten by an intermediate human player.

3.	 LEARNING ENVIRONMENT

This study aims to determine if a computer controlled
opponent can adapt to a human player’s style of game-play
using the same level of information and control that the human
player is given (i.e. no cheating). We explore conventional
supervised learning schemes and reinforcement learning. The

basic process of supervised learning is to provide the learner
with a set of training instances (recorded during some prior
play), where each instance is a vector of game conditions
and an action taken under those conditions. The induction
algorithm seeks a terse characterization of those instances (e.g.
a decision tree) such that the inferred model is subsequently
able to choose an effective action in future and potentially
novel circumstances.

The well-known open-source WEKA workbench
includes just about every learning scheme in the public
domain and is employed for our experiments, both for static
model induction and continuous learning. A comprehensive
description of WEKA and the algorithms included can be
found in Witten & Frank [2005]. Reinforcement learning (RL)
is a method that attempts to match a situation (world state) to
an action so as to maximize some reward function. Unlike in
supervised learning, the learner (agent) is not explicitly told
the right action to take at any time but rather learns through
trial and error (i.e. no training examples). The lack of known
‘correct’ examples often results in slower learning than for
supervised schemes, but in principle, given sufficient learning
time, RL is capable of exploring the entire search space and so
is able to find the optimum solution (in the limit).

The underlying approach utilizes state-action pairs,
where [notionally] all possible combinations of states and
actions are kept in memory along with the accumulated
reward for each state-action pair based upon what happened
whenever this action was taken from this state in the past.
Several reinforcement learning schemes exist to choose
from, and we utilize PIQLE (Platform Implementing Q-
Learning) in this study. PIQLE is a Java framework designed
to separate problems from algorithms, allowing researchers to
test new algorithms on standard problems easily. It includes
implementations of various RL algorithms (generally those
described in Sutton and Barto, 1998), but only the state-action
pair algorithm was trialed. It stores all combinations of states
and actions along with the maximum expected reward for
each, but uses hashing to reduce the memory requirement so
that only observed state-action pairs are stored. This approach
works well on small or simplified problems such as BZFlag,
but has difficulty scaling to more complex domains. That is,
memory requirements increase exponentially with the number
of states and actions, and all state-action pairs, in principle,
must be visited repeatedly in order for the algorithm to
converge. PIQLE allows the number of actions available to be
set on a state-by-state basis, which is in practice sufficient to
keep requirements manageable.

4.	 CONTROLS AND ATTRIBUTES

BZFlag allows players to control a tank inside the
virtual world created by the BZFlag server. For this study,
overall control is separated into three distinct classes;
speed, shooting, and rotation. Models are inferred for each
class and combined together to form a complete bot AI.
Such separation makes it possible to focus on each decision
process independently, simplifying the learning objectives
without undermining the overall goal of having adaptive bot
behaviour.

�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Speed is the tank’s velocity along the line it is facing
and is adjusted by setting a floating-point number representing
the fraction of the maximum possible speed. This can be set
to a maximum of 1.0 and a minimum of -0.5, with 1.0 being
full speed ahead and -0.5 being full speed backwards (the
tank can only go half as fast in reverse). Changes to the speed
happen virtually instantaneously (that is to say, to the user the
acceleration appears to happen instantly).

 Shooting is the ability to fire a projectile from the tank.
Once fired the projectile continues along a straight-line path
until it either hits something (an obstacle, tank, or wall) or
reaches its maximum range. A reloading mechanism prohibits
the tank from always being able to fire, unlike the speed and
rotation controls that are always available. The shooting
control is also different from speed and rotation in that it is a
binary variable and thus can simply be toggled as needed.

Rotation is the tank’s orientation in the virtual world. As
with speed this is adjusted by setting a floating-point number
representing the fraction of the maximum possible turn speed.
It has a maximum of 1.0 and a minimum of -1.0, where 1.0
is turning as fast as possible to the left and -1.0 is turning as
fast as possible to the right. Unlike speed however, turning
does not happen instantaneously—it takes time for the tank to
rotate; approximately 3 seconds to turn 360 degrees.

The training data is gathered from a one-on-one match
between the autopilot and the default robot player. The
decisions made by the autopilot player are output at each time-
step of the game. We concede that the maximum level of skill
learnable by the bot is potentially limited by the skill of its
teacher, and that it would therefore be preferable to learn from
expert humans than from either the autopilot or default robot.
However, gathering training data from people is somewhat
harder; and unnecessary given that we are only demonstrating
the overall approach in this paper.

Table 1 itemizes the attributes in the training data.
Position attributes (MyPosition and EnemyPosition) are the
absolute position of a tank (autopilot or opponent) on the
world axes. The X and Y coordinates have a range of -200 to
+200 in our experiments, the Z coordinates have a minimum
value of 0 and a maximum of 30 (n.b. there is a server option
that allows tanks to jump on top of obstacles in the world).
Velocity attributes (MyVelocity and EnemyVelocity) are the
velocities of the tank along the three axes, as given by the
attribute’s annotation. These have a range of -25 to +25.
EnemyDistance is the straight-line distance to the opponent’s
tank in BZFlag units. In the world configuration used here, this
has a minimum value of 0 and a maximum of approximately
565 (i.e. maximum Euclidian distance on the diagonal).
AngleDifference is the difference in angle between the tank’s
current orientation and the orientation required for it to face
straight at the opponent. This is measured in radians and so has
a minimum value of 0 and a maximum of approximately 3.14
(just under 180 degrees). isObscured is a Boolean value that
is true if the opponent’s tank is obscured by an obstacle. The
EnemyDistance, AngleDifference, and isObscured attributes
are all generated by functions that are built-in to the autopilot’s
logic. The attributes isObscured and Fire are Boolean values
and all the rest are floating-point values.

5.	 INITIAL STATIC MODELS

Initial static learning was attempted first as proof-of-
concept that supervised learning was capable of achieving
satisfactory bot behaviour in BZFlag, and to gain insights
as to which learning schemes worked best. Separate models
were learned to independently control tank speed, the decision
to shoot, and the angle of rotation (i.e. direction). An initial
dataset of 150,000 training instances was generated, then
sampled to obtain random stratified subsets of 1500 examples
(i.e. equal numbers of positive and negative instances). Ten-
fold cross-validation was used to train and evaluate a wide
range of learning schemes available in WEKA, and results
from 27 of the more commonly known (and best performing)
ones are outlined below.

TABLE I
ATTRIBUTES AND CLASSES

 Attribute Description

MyPositionX - The position of the autopilot’s tank
on the X axis

MyPositionY - The position of the autopilot’s tank
on the Y axis

MyPositionZ - The position of the autopilot’s tank
on the Z axis

MyVelocityX - The velocity of the autopilot’s tank
along the X axis

MyVelocityY - The velocity of the autopilot’s tank
along the Y axis

MyVelocityZ - The velocity of the autopilot’s tank
along the Z axis

EnemyPositionX - The position of the opponent’s tank
on the X axis

EnemyPositionY - The position of the opponent’s tank
on the Y axis

EnemyPositionZ - The position of the opponent’s tank
on the Z axis

EnemyVelocityX - The velocity of the opponent’s tank
along the X axis

EnemyVelocityY - The velocity of the opponent’s tank
along the Y axis

EnemyVelocityZ - The velocity of the opponent’s tank
along the Z axis

EnemyDistance - The straight-line distance to the
opponent’s tank.

AngleDifference - How far the tank must rotate to be
facing the opponent tank

isObscured - true if opponent’s tank is obscured,
false otherwise.

Fire (class) - true when a shot is fired, false
otherwise.

Speed (class) 1.0 = full speed ahead, 0 =
stopped,-0.5 = max. reverse speed

Rotation (class) 1.0 = rotate as fast as possible left,
-1.0 = as fast as possible right

10GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Fig. 1. Classification accuracy for shooting models.

Shooting: The results for the shooting model are
shown in Figure 1. Note that ZeroR (i.e. baseline naïve
classifier) scores close to 50% as expected, and the majority
of the classifiers score over 90%. This suggests that either the
problem of controlling tank shooting is a relatively simple
one, or over-fitting of the data has occurred. To test for over-
fitting, one of the classifiers was inserted into the autopilot
bot while retaining the original bot code for controlling speed
and rotation. The PART classifier was selected because it is a
rule-based learner and therefore the model is easily integrated
into the autopilot’s native IF...THEN rules, and because it
has the smallest and least complex set of rules of all the rule-
based learners. This modified autopilot bot was pitted against
the default robot player in a one-on-one best-of-a-hundred
death match, with the goal of seeing how well it did in novel
situations. Repeated matches produced more or less even
performance, suggesting the inferred shooting model was not
over-fitting.

Speed control is more complex than shooting because
a floating point numeric value must be predicted, rather than
a binary value. Very few classification algorithms are able to
predict numeric values, and the majority of the classifiers in
WEKA must have a nominal class. As per standard procedure,
we discretized the class value (i.e. the speed). Recall that
changes to tank speed happen almost instantaneously. This
greatly simplifies descretization since virtually all values in
the dataset are either 1.0 (full speed ahead), 0.0 (stopped), or -
0.5 (full speed backwards). This was made effectively uniform
for all instances using the Discretize filter available in WEKA
(using equal-width binning), such that the bins generated
by the filter are; < -0.315415, -0.315415 to 0.342293, and >
0.342293.

Once again, ten-fold cross-validation was used to
evaluate many different classifiers in WEKA. Unfortunately
space limitations preclude including the analogous graph here
(though all results will be presented at the conference). Many
of the classifiers scored well over 90%, with JRip performing at
nearly 99%. As with shooting, an empirical test was devised to
guard against possible over-fitting by inserting the JRip model
into the autopilot bot (leaving the rest of the original code in
place) and having it compete against the default robot player
in a series of best-out-of-100 death matches. The modified bot
averaged 43 kills per match, indicating a successful model had
been learned to work in novel situations.

Rotation, like speed, is a numeric value so must be
discretized for the learning schemes that require a nominal

class. A crude discretization might place each value into one of
the three groups; -1.0 (turn left) 0.0 (go straight) and 1.0 (turn
right). However, because rotation values in the training data
are more evenly spread than the speed values, we empirically
settled on hand-set bins of < -0.01, -0.01 – 0.01, and > 0.01.
A broad array of learning schemes was once again evaluated
under ten-fold cross-validation. Many decision tree models
performed well in experimentation (but, once again, space
limitations preclude printing them here), with RandomForest
winning by a small margin at around 98% accuracy. Empirical
tests for over-fitting through the one-on-one death-matches
saw RandomForest score an average of 41 kills. REPTree
actually scored better in similar tests (averaging 46 kills
per match), but RandomForest generally performed better
in subsequent death-match tests with bots that had all three
controls (shooting, speed and rotation) operated by inferred
models.

6.	 CONTINUOUS LEARNING MODELS

The preceding experiments establish that satisfactory
control mechanisms can be successfully learned. But because
such models are inferred from a finite set of example instances,
their maximum performance tends to be inherently limited
(assuming the training sample is not a characteristic set). One
way to overcome this is to allow the learning algorithm to
continue to consider new sample instances (without limit) as
it plays. Each instance is annotated with a feature that records
the associated outcome, using +1 if a hit is scored on the
opponent, -1 if the bot is itself hit, -0.1 if the bot is reloading
(to slightly penalize just continuously shooting whenever it is
possible to do so), and 0 all other times. All decisions made
by the bot and those made by the opponent are sent to the
classifiers, which update their models for shooting, speed and
rotation accordingly. If memory (or update time) becomes an
issue, older instances (or poorly classified ones) can be deleted
from the training set, such that the models are always inferred
from the most recent (or most successful) experiences.

The process, shown in Figure 2, is as follows. The bot
sends world information from BZFlag to the WEKA-Server
and awaits a response. All instances received by WEKA-
Server are sent to ClassifierBuilder. ClassifierBuilder reruns
the learning algorithm and sends the updated model to WEKA-
Server, which then issues control instructions to the bot.

Fig. 2. Communication topology for all continuous learning models.

In principle, any ML algorithm can be used to build
the classifier. A set of experiments was devised to determine
which combination of algorithms (i.e. one each for the rotation,
shooting and speed models) showed the best overall trend for
improving over time. In each test, the learning bot played the
robot-pilot in a death-match until the total kill count reached

11GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

300 (chosen arbitrarily). After every ten kills (called a 10-
kill block), the number of times the bot scored a kill was
recorded, creating 30 data points per match. The ability for
each algorithm to improve is measured by plotting these data
points and comparing the slope of the linear trend lines.

Experiments with a many combinations of learning
algorithms indicated that DecisionTable was clearly the best
for controlling rotation, improving steadily in every iteration.
OneR (a one-level decision tree) always gave the best control
results for shooting (although REPTree was close), indicating
that the decision of whether to shoot or not is probably quite
trivial. Two algorithms, JRip and RandomTree, showed the
best trends for improvement when controlling speed, and this
can be seen in Figure 3.

Fig. 3. Trends for two continuous learning bots.

Although RandomTree ultimately achieved a
higher average score, JRip showed the best trend towards
improvement.

We note that we were unable to get a combination of
models to match or exceed the success rate of the robot-pilot.
This possibly suggested that the models are at best able to
converge on the playing ability of their teacher, which was
robot-pilot itself. To breach this limit, the bot must be able to
explore new behaviours outside of the examples provided by
its teacher. Such learning by trial-and-error is the domain of
reinforcement learning, discussed in the next section.

7.	 REINFORCEMENT LEARNING

PIQLE utilizes a so-called Q-learning framework that
randomly explores (in a biased way) the behavior space,
recording the outcome of chosen actions with some kind of
reward or penalty (where penalty is typically just a lesser or
negative reward). PIQLE creates a multidimensional table
(by hashing to reduce memory demands) where each cell is
indexed by a state-action pair and maintains a record of the
total reward observed when that action was previously taken
in that state. Actions are chosen using random proportionate
selection over possible actions from the current state based on
the reward each has received. That is to say, selection is biased
towards successful action but never precludes any possible
action.

At least two reviews are required for every paper
submitted. For conference-related papers, the decision to
accept or reject a paper is made by the conference editors and
publications committee; the recommendations of the referees
are advisory only. Undecipherable English is a valid reason for
rejection. Authors of rejected papers may revise and resubmit
them to the TRANSACTIONS as regular papers, whereupon
they will be reviewed by two new referees.

Table 2 shows the values used to represent world state
for the PIQLE agent. This is a much smaller set of attributes
than those used previously but should be the minimum data
required to accurately distinguish world states. However, using
the raw values creates too large a state-action pair space for
the Q-learning framework to operate effectively, so substantial
rounding is necessary. Specifically, the RelativePosition
attributes are rounded off to the nearest 40, giving 21 possible
values using the world configuration described earlier. The
AngleDifference attribute is rounded to the nearest 0.5, giving
a range of 12 values (0 to +6.0). FiringStatus is an integer
value with only three possible values so is left unchanged.

Figure 4 shows a graph plotting PIQLE’s success
rate for 1000-kill blocks over a match that terminates after
100,000 kills. Although the average performance does not

TABLE II
ATTRIBUTES AND CLASSES FOR REINFORCEMENT

LEARNING

 Attribute Description

RelativePositionX The position of the opponent’s tank
on the X axis, relative to the
autopilot’s tank

RelativePositionY The position of the opponent’s tank
on the Y axis, relative to the
autopilot’s tank

AngleDifference The difference between the current
rotation of the agent’s tank, and the
rotation which would point the
agent’s tank straight at the opponent’s
tank. (How far the agent’s tank must
rotate to be facing the opponent tank)

FiringStatus Integer value, tank can only fire when
value is 1 (meaning ‘ready’)

12GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

reach 50%, every test we performed produced a positive trend
that continued until memory was exhausted. The implication
is that bot performance could conceivably continue to improve
until above average performance is attained. Indeed, from a
practical perspective, the fundamental problem may turn out
to be one of inhibiting the models from getting too good.

Fig. 4. Positive trend by reinforcement learning.

8.	 CONCLUSION

We have shown that first-person shooter bots can be
created using machine learning methods. More importantly, we
have demonstrated how continuous learning can be employed to
created bots that continuously adapt their behavior in response
to their experiences, allowing them to change their actions and
responses over time and toward different players. We have
also shown how reinforcement learning can be applied to first-
person shooter games as a means to make bots that learn how
to play a game all by themselves, demonstrating a technology
of considerable practical benefit for game engineers in that an
unlimited number of bots can now be developed, each with
independent and continually adapting behaviours, without the
need to code expert game bots at the outset. Overall, these
methods can both improve game development and extend
gameplay experiences for gamers.

REFERENCES

[1]	 Thurau, C., Bauckhage, C., & Sagerer, G. Imitation learning at all
levels of game-AI. In Proceedings of the International Conference on
Computer Games, Artificial Intelligence, Design and Education, 2004,
pp. 402–408.

[2]	 Pieter Spronck and Jaap van den Herik. Game Artificial Intelligence
that Adapts to the Human Player, 2004. http://www.ercim.org/
publication/Ercim_News/enw57/spronck.html.

[3]	 Thurau, C., Bauckhage, C., and Sagerer, G. Combining self-organizing
maps and multilayer perceptrons to learn bot-behavior for a commercial
computer game. In Proceedings of the GAME-ON, 119–123.2003.

[4]	 Smith, M. Lee-Urban, S. Munoz-Avila, H. RETALIATE: Learning
Winning Policies in First-Person Shooter Games, Proceedings of the
National Conference on Artificial Intelligence, 2007.

[5]	 Millington, I. Artificial Intelligence for Games. Series in Interactive
3D Technology. Morgan Kaufmann. ISBN 0-12-497782-0, 2006.

[6]	 Palmer, Nick. Machine Learning in Games Development, 2002.
	 http://ai-depot.com/GameAI/ Learning.html.
[7]	 Dawes, Mark and Hall, Richard. Towards Using First-Person Shooter

Computer Games as an Artificial Intelligence Testbed. In Knowledge-
Based Intelligent Information and Engineering Systems, (pp. 276-
282), Springer Berlin/Heidelberg. 2005.

[8]	 Witten, I.H. and Frank, E. 2005. Data Mining: Practical machine
learning tools and techniques. 2nd Edition, Morgan Kaufmann, San
Francisco. 2005.

[9]	 Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction.
Bradford Book, The MIT Press, MA. 1998.

Tony C. Smith is a Senior Lecturer in the
Department of Computer Science at the University
of Waikato, where he is also an active member of the
WEKA Machine Learning Group. He is an associate
editor of the International Journal on Intelligent
Data Analysis, and is the co-founder of several
computer technology companies, including Reel
Two Inc, SureChem Inc., Rifleman Systems Ltd. and
most recently Proofstone Ltd. He is a member of the

Language Technology Association and serves on the programme committee
for a number of international conferences.

Jonathan Miles recently completed his Masters degree in computer science
at Waikato University under the supervision of Dr. Smith.

