
�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

1

The Design and Implementation of a Testbed for
Comparative Game AI Studies

Hollie Boudreaux, Jim Etheredge, Ashok Kumar

Abstract—An essential component of realism in video games is
the behavior exhibited by the non-player character (NPC) agents
in the game. Most development efforts employ a single artificial
intelligence (AI) method to determine NPC agent behavior during
gameplay. This paper describes an NPC AI testbed under
development which will allow for a variety of AI methods to
be compared under simulated gameplay conditions. Two squads
of NPC agents are pitted against each other in a game scenario.
Multiple games using the starting same AI assignments will form
an epoch. The testbed allows for the testing of a variety of AI
methods in three dimensions. Individual agents can be assigned
different AI methods. Individual agents can use different AI
methods at different times during the game. And finally, the
AI used by one type of agent can be made to differ from the
AI used by another agent type. Extensive data is collected for
all agent actions in all games played in an epoch. This data will
form the basis of the comparative analysis.

Index Terms—Artificial intelligence, testbed, video game stud-
ies, gameplay simulation

I. INTRODUCTION

THIS paper discusses the implementation of a testbed to
be used as a mechanism for research into comparative

artificial intelligence techniques as applied to NPCs in video
games. Most video games use a single AI methodology, such
as pathfinding, rule-based systems, or neural networks. The
intent of the testbed is to allow the AI technique to be varied
during gameplay.

The approach is to create a generic game environment that
allows complete flexibility in the number and composition of
the agent squads. There are several agent types with inherent
specialties and personal goals. Various AI techniques are
being implemented and can be assigned in real time. Game
control is accomplished via the use of a user interface which
offers detailed control over the environment, squads, and
agent parameters. The testbed also includes extensive event
logging for immediate feedback as well as post-trial in-depth
comparative analysis of AI methods.

II. RELATED WORK

Aha and Molineaux [1], [2] propose a testbed named
Testbed for Integrating and Evaluating Learning Techniques
(TIELT). The goal of TIELT is to ease the integration of
artificial intelligence systems with gaming simulators, but the
current status of TIELT’s development is not known.

Coiana et al. [3] present a testbed platform for the iterative
design of multimodal games on a mobile phone or a PDA.

Manuscript received June 30, 2010.
The authors are with the University of Louisiana at Lafayette.

The work focuses on games on mobile devices. The work
takes a player centered design approach and aims to quickly
test various forms of multimodal interaction. The testbed is
reported to facilitate efficient exploration of the multimodal
design space.

Work by Dawest and Hall [4] highlights that embedding a
cognitive model into stable artificial intelligence characters is
non-trivial, and proposes an intermediate architecture for a first
person shooter game and artificial intelligence. The feasibility
of the architecture is reported to have been assessed within
the game Unreal Tournament 2004.

Fullam et al. [5] introduce a testbed named Agent Reputa-
tion and Trust (ART). The ART testbed initiative is charged
with the task of establishing a testbed for agent trust and
reputation related technologies. This testbed serves two roles:
(1) as a competition forum in which researchers can compare
their technologies against objective metrics, and (2) as a
suite of tools with flexible parameters, allowing researchers
to perform customizable, easily repeatable experiments.

Testbeds reported in the literature do not provide for mul-
tiple types of agents with each potentially using a different
AI method, whereas the proposed solution does provide these
features. The eventual goal of the proposed solution is to
compare the effects of many AI methods among members of
an agent squad to determine which combination provides the
most effective team. In addition, the effects of changing the
AI of an agent mid-trial will also be examined.

III. TESTBED DESIGN AND IMPLEMENTATION

The testbed is implemented in C++ using the Object-
Oriented Graphics Engine (Ogre) [6]. Ogre is free, open
source, and supported by a large online community. The
interface was created using CEGUI [7], an external library for
Ogre. The testbed terrain was created using EarthSculptor [8]
and the agent models were created using Maya [9].

A. User Interface

The main window contains buttons for accessing the other
windows. For example, pressing the “Agent Parameters” but-
ton will launch the corresponding window. A drop down box
is available along the top of this window that contains all
available agents. When an agent is selected all the parameters
associated with that agent are displayed and can be edited if
desired.

The game creation window, shown in Fig. 1, allows the user
to specify the number of agents of each type for each squad.
The testbed then creates the desired number of agents with

DOI: 10.5176_2010-2283_1.1.01

The Design and Implementation of a Testbed for 
Comparative Game AI Studies

Hollie Boudreaux, Jim Etheredge, Ashok Kumar

Ashok Kumar: axk1769@louisiana.edu
Hollie Boudreaux: hollieboudreaux@gmail.com



�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

3

Fig. 5: Simplified Game Environment

Fig. 6: Agents Seen Lists for R1 and R2

A simplified representation of a portion of the game envi-
ronment is shown in Fig. 5. R1 and R2’s viewing areas are
shaded in gray. R1 can see agents B1, B2, and R3, while B3 is
just out of range. Assume that R2 can see agents B4, B5, and
B6, which are not shown in Fig. 5. The communication range
of R1 is represented by the circle surrounding it. Since agent
R2 is within this range, R1 and R2 can share information.
The list of visible agents for both R1 and R2 is shown in
Fig. 6. Shaded boxes represent information that is gained via
this communication process.

When information is exchanged between agents R1 and R2,
R1 gains knowledge of the locations of B4, B5, and B6 and
appends their names to the end of its list of visible enemy
agents. Similarly, R2 learns the positions of B1 and B2 from

R1. When R1 and R2 share information about ally agents
R2 gains knowledge of R3 from R1. Agent R3 cannot share
information since it is not within communication range of
either R1 or R2.

V. PRESERVING AGENT CONFIGURATIONS AND
PARAMETERS BETWEEN TRIALS

A user may wish to run multiple trials with identical agent
starting positions and different parameters. A record of all
actions taken during a trial would also be useful. Several
utilities and extensions to the testbed have been created to
accomplish these goals.

A. Logs

The logging utility was created in order to keep a record of
all actions performed during a game or trial. Every possible
action that can occur, such as creation, deletion, movement,
and attacking, has an associated log entry type. When an action
is performed, a log entry is written both to the screen and to
a log file. The log file entries only save the minimum amount
of data, as opposed to the screen entries which are more
verbose. For example, the screen entry “RedSoldier1 attacked
BlueHealer2 for 5 damage” would be written to the file as
“7 RedSoldier1 BlueHealer2 5.” In the preceding example log
entry the 7 represents the action attack within an enumerated
list. In a future version of the testbed the log will be used
to “save” a trial or game in progress and reconstruct the
scenario at a later time in order to continue from where it
was suspended.

A separate log parser program has also been created. It can
read the log files and display the entries in a human readable
format. The parser also allows for the filtering of log data by
one or more entry types and one or more agents. For example,
this allows a user to check for all attack actions performed by
a specific agent.

B. Level Editor

While the ability to place agents exists on the testbed,
it will eventually be expanded to contain obstacles such as
walls and objects that can be used for cover. It was decided
that a separate program to set the initial position of agents
and environmental objects would be useful to avoid loading
the testbed down with features unnecessary for performing
its primary purpose. The Level Editor, shown in Fig. 7, was
created to serve that purpose.

The menu shown on the left side contains a radio button
for each type of object and agent available. The object whose
radio button is clicked will be placed on the terrain at the
position of a left mouse click. There is no restriction on the
number of objects that can be placed this way. An object can
be moved using a click and drag operation. Selecting groups
of agents to move simultaneously is also supported. After
creating the desired layout, clicking the save button on the
right side menu will create a .lvl file specifying all objects
present in the scene, their locations, and their orientations.
This file can then be loaded into the testbed application. When

2

Fig. 1: The Create Game Window

default parameters and places them into the game world. The
placement is selected by the user to either be random or around
a specified squad base location. A check is performed to ensure
an agent is not placed inside a wall or other obstacle. Adding
a single agent is also possible through a different window
and is used to create a new agent with full control over its
parameters. All available parameters have text boxes where
the user can specify the desired value or leave it blank to use
the default value. The user can choose to have the agent placed
into the scene at a location specified as the squad base or at
the location of a mouse click.

After all agents have been placed, the user can access the
buttons used to control a trial via the “Play Game” button on
the main menu. This brings up another menu with options to
start, stop, pause, step, or reset the current trial. Fig. 2 shows
this menu in addition to a group of agents about to begin a
trial. The start and stop options will begin and end a trial,
respectively. Pause will temporarily halt a trial in progress or
resume one that is already paused. Fig. 3 shows a paused trial
with several defeated agents. Step allows the user to run one
game cycle at a time. Reset will return all agents to their initial
position and set all parameters to their original configuration.
As can be seen in Fig. 2 and 3, the agents’ representation is
purposefully unadorned to avoid negatively impacting testbed
performance.

IV. DETECTING OTHER AGENTS

The formula for the dot product of two vectors provides
a simple method for determining if an agent is within the
viewing range of another. The algorithm used is shown in
Fig. 4.

For example, assume agent A has a viewing angle of 60◦

and is trying to determine if he can see Agent B. If the dot
product between the two normalized vectors is less than the
cosine of 60◦, then A can detect B, provided that the distance
between A and B is less than A’s maximum viewing distance.
Detected agents are added to either the enemy agents seen or

Fig. 2: Pre-Trial Setup

Fig. 3: A Trial in Progress

ally agents seen lists as appropriate. Next, the communication
range is used to determine ally agents with which each agent
can currently exchange information. Ally agents exchange
information by exchanging lists of visible enemy agents and
visible ally agents. As a result, an agent can obtain much more
information about the world than would normally be available.
In a future phase of the testbed, an option to display each
agent’s viewing area during gameplay will be added.

Fig. 4: Algorithm for the Detection of Agents



�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

3

Fig. 5: Simplified Game Environment

Fig. 6: Agents Seen Lists for R1 and R2

A simplified representation of a portion of the game envi-
ronment is shown in Fig. 5. R1 and R2’s viewing areas are
shaded in gray. R1 can see agents B1, B2, and R3, while B3 is
just out of range. Assume that R2 can see agents B4, B5, and
B6, which are not shown in Fig. 5. The communication range
of R1 is represented by the circle surrounding it. Since agent
R2 is within this range, R1 and R2 can share information.
The list of visible agents for both R1 and R2 is shown in
Fig. 6. Shaded boxes represent information that is gained via
this communication process.

When information is exchanged between agents R1 and R2,
R1 gains knowledge of the locations of B4, B5, and B6 and
appends their names to the end of its list of visible enemy
agents. Similarly, R2 learns the positions of B1 and B2 from

R1. When R1 and R2 share information about ally agents
R2 gains knowledge of R3 from R1. Agent R3 cannot share
information since it is not within communication range of
either R1 or R2.

V. PRESERVING AGENT CONFIGURATIONS AND
PARAMETERS BETWEEN TRIALS

A user may wish to run multiple trials with identical agent
starting positions and different parameters. A record of all
actions taken during a trial would also be useful. Several
utilities and extensions to the testbed have been created to
accomplish these goals.

A. Logs

The logging utility was created in order to keep a record of
all actions performed during a game or trial. Every possible
action that can occur, such as creation, deletion, movement,
and attacking, has an associated log entry type. When an action
is performed, a log entry is written both to the screen and to
a log file. The log file entries only save the minimum amount
of data, as opposed to the screen entries which are more
verbose. For example, the screen entry “RedSoldier1 attacked
BlueHealer2 for 5 damage” would be written to the file as
“7 RedSoldier1 BlueHealer2 5.” In the preceding example log
entry the 7 represents the action attack within an enumerated
list. In a future version of the testbed the log will be used
to “save” a trial or game in progress and reconstruct the
scenario at a later time in order to continue from where it
was suspended.

A separate log parser program has also been created. It can
read the log files and display the entries in a human readable
format. The parser also allows for the filtering of log data by
one or more entry types and one or more agents. For example,
this allows a user to check for all attack actions performed by
a specific agent.

B. Level Editor

While the ability to place agents exists on the testbed,
it will eventually be expanded to contain obstacles such as
walls and objects that can be used for cover. It was decided
that a separate program to set the initial position of agents
and environmental objects would be useful to avoid loading
the testbed down with features unnecessary for performing
its primary purpose. The Level Editor, shown in Fig. 7, was
created to serve that purpose.

The menu shown on the left side contains a radio button
for each type of object and agent available. The object whose
radio button is clicked will be placed on the terrain at the
position of a left mouse click. There is no restriction on the
number of objects that can be placed this way. An object can
be moved using a click and drag operation. Selecting groups
of agents to move simultaneously is also supported. After
creating the desired layout, clicking the save button on the
right side menu will create a .lvl file specifying all objects
present in the scene, their locations, and their orientations.
This file can then be loaded into the testbed application. When

2

Fig. 1: The Create Game Window

default parameters and places them into the game world. The
placement is selected by the user to either be random or around
a specified squad base location. A check is performed to ensure
an agent is not placed inside a wall or other obstacle. Adding
a single agent is also possible through a different window
and is used to create a new agent with full control over its
parameters. All available parameters have text boxes where
the user can specify the desired value or leave it blank to use
the default value. The user can choose to have the agent placed
into the scene at a location specified as the squad base or at
the location of a mouse click.

After all agents have been placed, the user can access the
buttons used to control a trial via the “Play Game” button on
the main menu. This brings up another menu with options to
start, stop, pause, step, or reset the current trial. Fig. 2 shows
this menu in addition to a group of agents about to begin a
trial. The start and stop options will begin and end a trial,
respectively. Pause will temporarily halt a trial in progress or
resume one that is already paused. Fig. 3 shows a paused trial
with several defeated agents. Step allows the user to run one
game cycle at a time. Reset will return all agents to their initial
position and set all parameters to their original configuration.
As can be seen in Fig. 2 and 3, the agents’ representation is
purposefully unadorned to avoid negatively impacting testbed
performance.

IV. DETECTING OTHER AGENTS

The formula for the dot product of two vectors provides
a simple method for determining if an agent is within the
viewing range of another. The algorithm used is shown in
Fig. 4.

For example, assume agent A has a viewing angle of 60◦

and is trying to determine if he can see Agent B. If the dot
product between the two normalized vectors is less than the
cosine of 60◦, then A can detect B, provided that the distance
between A and B is less than A’s maximum viewing distance.
Detected agents are added to either the enemy agents seen or

Fig. 2: Pre-Trial Setup

Fig. 3: A Trial in Progress

ally agents seen lists as appropriate. Next, the communication
range is used to determine ally agents with which each agent
can currently exchange information. Ally agents exchange
information by exchanging lists of visible enemy agents and
visible ally agents. As a result, an agent can obtain much more
information about the world than would normally be available.
In a future phase of the testbed, an option to display each
agent’s viewing area during gameplay will be added.

Fig. 4: Algorithm for the Detection of Agents



�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

5

Fig. 9: AI Interface Architecture

VII. TEST EPOCHS

In order to provide adequate test data it is necessary to
run a game multiple times using the same parameters. This
is accomplished in the testbed through the use of epochs. An
epoch is the same game run multiple times using the same
starting parameters. The starting parameters include:

• The number of games in the epoch.
• The number of agents on each squad.
• The type of each agent.
• The starting position of each agent.
• The resources associated with each agent.
Once the basic game environment has been specified by

the user, the testbed will run the epoch by starting a game
and letting it run to its conclusion. When the current game
is over, the testbed will reset the game environment to the
original configuration and begin the next game in the epoch.
When the specified number of games have been played, the
epoch will be terminated. Data logged for the epoch will be an
aggregate of the data logged for each individual game played.

There must be some form of randomness in the gameplay so
that running the same game over and over does not produce the
same results each time. This is accomplished by the inclusion
of probability factors associated with various events that occur
in the course of gameplay. The following list describes some of
the basic events and game parameters where the introduction
of randomness can have a significant effect on the final
outcome of the game.

• When no movement direction is indicated by the AI, an

agent can choose to move in a random direction.
• When an agent attacks, the success of the attack can be

determined in part by the agent’s expertise level.
• When an agent is wounded, its chances of survival can

be partially determined by a probability factor.
• When faced with multiple possible actions, an agent can

choose one at random.
One example of this type of randomness can be seen in the
agent expertise parameter. This parameter can be used to add
an element of randomness to the agents behavior. The lower
the expertise level of an agent, the more likely they will be to
make random decisions that result in actions not dictated by
the AI.

The overall effect of introducing randomness into the game-
play is to produce enough variability to ensure that no two
games will be exactly alike. However, caution must be exer-
cised to also ensure that the randomness does not invalidate
the behavior guidance provided by the AI. Toward this end,
the probabilities used to create randomness will generally be
set relatively low.

VIII. CONCLUSION

The testbed described in this paper is a tool to be used to
facilitate research into the comparative strengths and weak-
nesses of various artificial intelligence methodologies used
to guide the actions of non-player agents in video games.
As such, it is designed to provide a general purpose game
environment while, at the same time, creating a realistic
gaming look and feel. Its primary contribution to the research
is the collection of data that can be analyzed to determine
the effect of AI methodologies on the behavior of NPCs
in a game environment. The development of the testbed is
planned for several phases. After the first phase, which is
the initial creation of the basic testbed, subsequent phases
will enhance the data collection capability and add features
to the game environment. The ultimate goal of the project is
the collection and analysis of data gathered during gameplay
involving multiple AI methods used in tandem at both the
agent and squad level. Subsequent phases of development will
focus on fine tuning the testbed’s data collection capability
and adding additional features to extend the complexity of the
game environment.

ACKNOWLEDGMENT

The authors would like to acknowledge Devin Faulk, Joshua
Hebert, Jennifer Lavergne, Phillip Spear, and Devin Rooney
for their assistance with the implementation of Phase I of the
testbed.

REFERENCES

[1] D. W. Aha and M. Molineaux, “Integrating learning in interactive gaming
simulators,” in Challenges in Game AI: Papers of the AAAI04 Workshop
(Technical Report WS-04-04). AAAI Press, 2004.

[2] M. Molineaux and D. W. Aha, “Tielt: a testbed for gaming environments,”
in AAAI’05: Proceedings of the 20th national conference on Artificial
intelligence. AAAI Press, 2005, pp. 1690–1691.

[3] M. Coiana, A. Conconi, L. Nigay, and M. Ortega, “Test-bed for multi-
modal games on mobile devices,” in Proceedings of the 2nd International
Conference on Fun and Games. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 75–87.

4

Fig. 7: The Level Editor

Fig. 8: The .sav File Menu

using this method, agents are created with default parameters,
but these can be altered at the user’s discretion via the Agent
Parameters window.

C. .sav Files

A user may wish to run multiple trials with the same
configuration of agents but varying parameters. The .lvl files
do not include any parameter information aside from type,
location, and orientation. The .sav files were created in order
to preserve changes made to agents parameters in the Agent
Parameter window. A user can create a standard layout of
agents and environmental objects using the Level Editor and
use the resulting .lvl file as a basis for creating many .sav
files with different parameter configurations. When the file
is loaded, all existing agents are deleted and new agents are
created using the parameter information specified in the .sav
file.

Pressing F12 or the .sav file button on the main menu will
launch the .sav file window. On the right side, as shown in
Fig. 8, a string can be specified. This string will be appended
to the filename, allowing the user to easily distinguish between
multiple .sav files. The user can select a .sav file from the
dropdown list on the left. When the load button is pressed, all
existing agents are deleted and new agents are created using
the parameters specified in the .sav file.

VI. AGENTS

This section will discuss the differences between agent
types, agent parameters, and the representation of an agent.

A. Agent Types
Five types of agents are used in the testbed. The Soldier is a

generic agent that can use a weapon. The Tank agent is more
powerful than a Soldier, but moves considerably slower. Scouts
can see more of the environment and move faster than any
other type, but are relatively weak. Healer agents increase the
health of wounded ally agents, and Suppliers provide resources
to ally agents. Both the Healer and Supplier are unable to
attack other agents.

B. Agent Parameters
Many of the agent parameters used in the testbed fall into

one of the following categories:
• World Representation This includes position, orientation,

and size parameters.
• Detection The viewing range and distance (collectively

called fieldOfView) and communication distance fall into
this category.

• Agent interaction Separate lists are used to keep track of
enemy and ally agents that can be detected by a particular
agent. An additional list is used to monitor ally agents that
are in communication range.

• Resources This category covers items needed for an
agent to function, such as ammunition or bandages and
health.

Other parameters used include expertise level, squad alle-
giance, AI method used, and maximum movement speed. New
parameters will be added as the need arises.

C. Agent Actions
An agent may perform one action per time step. This agent

can choose to perform either a move or resource consuming
action. Actions such as fleeing from an enemy, patrolling an
area, or flanking a target are all examples of movement actions.
Firing a weapon, restoring health, or providing supplies are
resource consuming actions.

D. AI Interface
On each update cycle, each NPC’s action is determined

separately using a combination of its assigned AI methodology
and a randomization factor to add a nondeterministic element
to the game. Fig. 9 shows the decision process for updating
an agent’s AI. The agent’s representative bit string is passed
to the AI Interface layer and based on the value found in
the AI field it is sent to the appropriate AI module. As a
result of this representation, the numbers and types of AI
represented are independent of the rest of the program and
each agent does not have to use the same AI. During each
update cycle, each agent’s parameter bit string is submitted to
the AI interface. The AI interface uses the agent’s assigned
AI module to determine appropriate actions. The testbed will
complete each agent’s update by applying the selected action.
For example, the AI interface may suggest multiple possible
action for an agent leaving the testbed free to generate random
movement based on probability. This approach will allow the
testbed to include an element of randomness into the gameplay
without subverting decisions made by the AI interface.



�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

5

Fig. 9: AI Interface Architecture

VII. TEST EPOCHS

In order to provide adequate test data it is necessary to
run a game multiple times using the same parameters. This
is accomplished in the testbed through the use of epochs. An
epoch is the same game run multiple times using the same
starting parameters. The starting parameters include:

• The number of games in the epoch.
• The number of agents on each squad.
• The type of each agent.
• The starting position of each agent.
• The resources associated with each agent.
Once the basic game environment has been specified by

the user, the testbed will run the epoch by starting a game
and letting it run to its conclusion. When the current game
is over, the testbed will reset the game environment to the
original configuration and begin the next game in the epoch.
When the specified number of games have been played, the
epoch will be terminated. Data logged for the epoch will be an
aggregate of the data logged for each individual game played.

There must be some form of randomness in the gameplay so
that running the same game over and over does not produce the
same results each time. This is accomplished by the inclusion
of probability factors associated with various events that occur
in the course of gameplay. The following list describes some of
the basic events and game parameters where the introduction
of randomness can have a significant effect on the final
outcome of the game.

• When no movement direction is indicated by the AI, an

agent can choose to move in a random direction.
• When an agent attacks, the success of the attack can be

determined in part by the agent’s expertise level.
• When an agent is wounded, its chances of survival can

be partially determined by a probability factor.
• When faced with multiple possible actions, an agent can

choose one at random.
One example of this type of randomness can be seen in the
agent expertise parameter. This parameter can be used to add
an element of randomness to the agents behavior. The lower
the expertise level of an agent, the more likely they will be to
make random decisions that result in actions not dictated by
the AI.

The overall effect of introducing randomness into the game-
play is to produce enough variability to ensure that no two
games will be exactly alike. However, caution must be exer-
cised to also ensure that the randomness does not invalidate
the behavior guidance provided by the AI. Toward this end,
the probabilities used to create randomness will generally be
set relatively low.

VIII. CONCLUSION

The testbed described in this paper is a tool to be used to
facilitate research into the comparative strengths and weak-
nesses of various artificial intelligence methodologies used
to guide the actions of non-player agents in video games.
As such, it is designed to provide a general purpose game
environment while, at the same time, creating a realistic
gaming look and feel. Its primary contribution to the research
is the collection of data that can be analyzed to determine
the effect of AI methodologies on the behavior of NPCs
in a game environment. The development of the testbed is
planned for several phases. After the first phase, which is
the initial creation of the basic testbed, subsequent phases
will enhance the data collection capability and add features
to the game environment. The ultimate goal of the project is
the collection and analysis of data gathered during gameplay
involving multiple AI methods used in tandem at both the
agent and squad level. Subsequent phases of development will
focus on fine tuning the testbed’s data collection capability
and adding additional features to extend the complexity of the
game environment.

ACKNOWLEDGMENT

The authors would like to acknowledge Devin Faulk, Joshua
Hebert, Jennifer Lavergne, Phillip Spear, and Devin Rooney
for their assistance with the implementation of Phase I of the
testbed.

REFERENCES

[1] D. W. Aha and M. Molineaux, “Integrating learning in interactive gaming
simulators,” in Challenges in Game AI: Papers of the AAAI04 Workshop
(Technical Report WS-04-04). AAAI Press, 2004.

[2] M. Molineaux and D. W. Aha, “Tielt: a testbed for gaming environments,”
in AAAI’05: Proceedings of the 20th national conference on Artificial
intelligence. AAAI Press, 2005, pp. 1690–1691.

[3] M. Coiana, A. Conconi, L. Nigay, and M. Ortega, “Test-bed for multi-
modal games on mobile devices,” in Proceedings of the 2nd International
Conference on Fun and Games. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 75–87.

4

Fig. 7: The Level Editor

Fig. 8: The .sav File Menu

using this method, agents are created with default parameters,
but these can be altered at the user’s discretion via the Agent
Parameters window.

C. .sav Files

A user may wish to run multiple trials with the same
configuration of agents but varying parameters. The .lvl files
do not include any parameter information aside from type,
location, and orientation. The .sav files were created in order
to preserve changes made to agents parameters in the Agent
Parameter window. A user can create a standard layout of
agents and environmental objects using the Level Editor and
use the resulting .lvl file as a basis for creating many .sav
files with different parameter configurations. When the file
is loaded, all existing agents are deleted and new agents are
created using the parameter information specified in the .sav
file.

Pressing F12 or the .sav file button on the main menu will
launch the .sav file window. On the right side, as shown in
Fig. 8, a string can be specified. This string will be appended
to the filename, allowing the user to easily distinguish between
multiple .sav files. The user can select a .sav file from the
dropdown list on the left. When the load button is pressed, all
existing agents are deleted and new agents are created using
the parameters specified in the .sav file.

VI. AGENTS

This section will discuss the differences between agent
types, agent parameters, and the representation of an agent.

A. Agent Types
Five types of agents are used in the testbed. The Soldier is a

generic agent that can use a weapon. The Tank agent is more
powerful than a Soldier, but moves considerably slower. Scouts
can see more of the environment and move faster than any
other type, but are relatively weak. Healer agents increase the
health of wounded ally agents, and Suppliers provide resources
to ally agents. Both the Healer and Supplier are unable to
attack other agents.

B. Agent Parameters
Many of the agent parameters used in the testbed fall into

one of the following categories:
• World Representation This includes position, orientation,

and size parameters.
• Detection The viewing range and distance (collectively

called fieldOfView) and communication distance fall into
this category.

• Agent interaction Separate lists are used to keep track of
enemy and ally agents that can be detected by a particular
agent. An additional list is used to monitor ally agents that
are in communication range.

• Resources This category covers items needed for an
agent to function, such as ammunition or bandages and
health.

Other parameters used include expertise level, squad alle-
giance, AI method used, and maximum movement speed. New
parameters will be added as the need arises.

C. Agent Actions
An agent may perform one action per time step. This agent

can choose to perform either a move or resource consuming
action. Actions such as fleeing from an enemy, patrolling an
area, or flanking a target are all examples of movement actions.
Firing a weapon, restoring health, or providing supplies are
resource consuming actions.

D. AI Interface
On each update cycle, each NPC’s action is determined

separately using a combination of its assigned AI methodology
and a randomization factor to add a nondeterministic element
to the game. Fig. 9 shows the decision process for updating
an agent’s AI. The agent’s representative bit string is passed
to the AI Interface layer and based on the value found in
the AI field it is sent to the appropriate AI module. As a
result of this representation, the numbers and types of AI
represented are independent of the rest of the program and
each agent does not have to use the same AI. During each
update cycle, each agent’s parameter bit string is submitted to
the AI interface. The AI interface uses the agent’s assigned
AI module to determine appropriate actions. The testbed will
complete each agent’s update by applying the selected action.
For example, the AI interface may suggest multiple possible
action for an agent leaving the testbed free to generate random
movement based on probability. This approach will allow the
testbed to include an element of randomness into the gameplay
without subverting decisions made by the AI interface.



�GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

6

[4] M. Dawes and R. Hall, “Towards using first-person shooter computer
games as an artificial intelligence testbed,” in Knowledge-Based Intelli-
gent Information and Engineering Systems, 2005.

[5] K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol,
K. S. Barber, J. S. Rosenschein, L. Vercouter, and M. Voss, “A speci-
fication of the agent reputation and trust (art) testbed: experimentation
and competition for trust in agent societies,” in AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous agents and
multiagent systems. New York, NY, USA: ACM, 2005, pp. 512–518.

[6] “Ogre Website,” http://ogre3d.org/, 2009.
[7] P. Turner, “CEGUI,” http://www.cegui.org.uk/wiki/index.php/Main Page,

2009.
[8] E. Szoka, “Earth Sculptor,” http://www.earthsculptor.com/, 2009.
[9] Autodesk, “Maya,” http://usa.autodesk.com/adsk/, 2009.

Hollie Boudreaux received the B.S. degree (summa
cum laude) in computer science from Nicholls State
University, Thibodaux, LA in 2004, and the M.S. de-
gree in computer science in 2007 from the University
of Louisiana at Lafayette, Lafayette, LA, where she
is currently working toward the Ph.D. degree. Her
research interests include computer graphics, video
game design and development, artificial intelligence,
and multiagent systems.

Jim Etheredge received the M.S. degree in com-
puter science from the University of Southwestern
Louisiana in 1986 and the Ph.D. in computer science
from the University of Southwestern Louisiana in
1989. He is currently an associate professor of
computer science at the University of Louisiana at
Lafayette, Lafayette, LA and the coordinator for the
Video Game Design and Development concentration
of the undergraduate computer science curriculum.
His research and teaching interests include video
game design and development, artificial intelligence,

multiagent game systems, and database management systems.

Ashok Kumar is an Assistant Professor in the
Department of Computer Science at the University
of Louisiana at Lafayette. Dr. Kumar obtained his
Ph.D. in 1999 and worked for four years in industry
before joining academia full time. He has over
fifty publications in refereed journals, conferences,
and book chapters. He has served on the program
committees of several conferences.

6

[4] M. Dawes and R. Hall, “Towards using first-person shooter computer
games as an artificial intelligence testbed,” in Knowledge-Based Intelli-
gent Information and Engineering Systems, 2005.

[5] K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol,
K. S. Barber, J. S. Rosenschein, L. Vercouter, and M. Voss, “A speci-
fication of the agent reputation and trust (art) testbed: experimentation
and competition for trust in agent societies,” in AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous agents and
multiagent systems. New York, NY, USA: ACM, 2005, pp. 512–518.

[6] “Ogre Website,” http://ogre3d.org/, 2009.
[7] P. Turner, “CEGUI,” http://www.cegui.org.uk/wiki/index.php/Main Page,

2009.
[8] E. Szoka, “Earth Sculptor,” http://www.earthsculptor.com/, 2009.
[9] Autodesk, “Maya,” http://usa.autodesk.com/adsk/, 2009.

Hollie Boudreaux received the B.S. degree (summa
cum laude) in computer science from Nicholls State
University, Thibodaux, LA in 2004, and the M.S. de-
gree in computer science in 2007 from the University
of Louisiana at Lafayette, Lafayette, LA, where she
is currently working toward the Ph.D. degree. Her
research interests include computer graphics, video
game design and development, artificial intelligence,
and multiagent systems.

Jim Etheredge received the M.S. degree in com-
puter science from the University of Southwestern
Louisiana in 1986 and the Ph.D. in computer science
from the University of Southwestern Louisiana in
1989. He is currently an associate professor of
computer science at the University of Louisiana at
Lafayette, Lafayette, LA and the coordinator for the
Video Game Design and Development concentration
of the undergraduate computer science curriculum.
His research and teaching interests include video
game design and development, artificial intelligence,

multiagent game systems, and database management systems.

Ashok Kumar is an Assistant Professor in the
Department of Computer Science at the University
of Louisiana at Lafayette. Dr. Kumar obtained his
Ph.D. in 1999 and worked for four years in industry
before joining academia full time. He has over
fifty publications in refereed journals, conferences,
and book chapters. He has served on the program
committees of several conferences.


