
HadoopSec: Sensitivity-aware Secure Data Placement
Strategy for Big Data/Hadoop Platform using

Prescriptive Analytics

Abstract—Hadoop has become one of the key player in offering
data analytics and data processing support for any organization
that handles different shades of data management. Considering
the current security offerings of Hadoop, companies are
concerned of building a single large cluster and onboarding
multiple projects on to the same common Hadoop cluster.
Security vulnerability and privacy invasion due to malicious
attackers or inner users are the main argument points in any
Hadoop implementation. In particular, various types of security
vulnerability occur due to the mode of data placement in Hadoop
Cluster. When sensitive information is accessed by an
unauthorized user or misused by an authorized person, they can
compromise privacy. In this paper, we intend to address the
approach of data placement across distributed DataNodes in a
secure way by considering the sensitivity and security of the
underlying data. Our data placement strategy aims to adaptively
distribute the data across the cluster using advanced machine
learning techniques to realize a more secured data/infrastructure.
The data placement strategy discussed in this paper is highly
extensible and scalable to suit different sort of sensitivity/security
requirements.

Keywords-Big Data; Hadoop; Security Measures; Data Block
Placement; Sensitive Data placement; Multi-tenancy in Hadoop

I. INTRODUCTION

A distributed system is a network of self-governing
compute nodes connected by rapid networks that appear as a
single workstation. In real world, solving complex problems
means division of problem into sub tasks and each of which is
solved by one or more compute nodes which communicate
with each other. The current disposition towards Big Data
analytics has led to many intensive compute tasks. Big Data, is
termed for a collection of data sets which are large and
complex and difficult to process using traditional data
processing tools. The need for Big Data management is to
ensure high levels of data accessibility for business intelligence
and big data analytics. This condition needs applications
capable of distributed processing involving terabytes of
information saved in a variety of file formats. Hadoop is a
well-known and a successful open source implementation of
the MapReduce programming model in the realm of distributed
processing. The Hadoop runtime system coupled with HDFS
provides parallelism and concurrency to achieve system

reliability. The major categories of machine roles in a Hadoop
deployment are Client machines, Master nodes and Slave
nodes. The Master nodes supervise storing of data and running
parallel computations on all that data using Map Reduce. The
NameNode supervises and coordinates the data storage
function in HDFS, while the JobTracker supervises and
coordinates the parallel processing of data using Map Reduce.
Slave Nodes are the vast majority of machines and do all the
cloudy work of storing the data and running the computations.
Each slave runs a DataNode and a TaskTracker daemon that
communicates with and receives instructions from their master
nodes. The TaskTracker daemon is a slave to the JobTracker
likewise the DataNode daemon to the NameNode. HDFS file
system is designed for storing huge files with streaming data
access patterns, running on clusters of commodity hardware.
An HDFS cluster has two types of node operating in a master-
slave pattern: A NameNode (Master) managing the file system
namespace, file System tree and the metadata for all the files
and directories in the tree and some number of DataNode
(Workers) managing the data blocks of files. The HDFS is so
large that replicas of files are constantly created to meet
performance and availability requirements. A replica is usually
created so as the new storage location offers better performance
and availability for accesses to or from a particular location. In
the Hadoop architecture, the replica is commonly selected
based on storage and network feasibility which makes it fault
tolerant so as to recover from failing Data Node. The rest of
this paper is organized as follows. Section II, discusses related
current default block placement algorithm in Hadoop; Section
III discusses the related work on placement algorithms; Section
IV discusses the proposed Sensitivity-aware Secure Data
Placement Strategy for Hadoop (HadoopSec) – based on an
advanced machine learning placement algorithm that caters to
sensitivity of data and prescribes the best suitable placement
mechanism and also relates the output of the algorithm with
historical information to truly make the system prescriptive in
its nature. Section V concludes and discusses the future scope
of this work.

II. HDFS DEFAULT BLOCK PLACEMENT STRATEGY

In HDFS, a file is divided into small chunks of size (default
64MB) defined by the parameter dfs.block.size in the config
file named hdfs-site.xml. These data chunks will be placed on a

Revathy P1 and Rajeswari Mukesh2

1 OCBC Bank Limited, Singapore
2 Hindustan Uniersity, Chennai, India

1 revamadhankr@gmail.com, 2 rajeswarim@hindustanuniv.ac.in

GSTF Journal on Computing (JoC) Vol.6 No.1 2018

© Th e Author(s) 2018. This article is published with open access by the GSTF

DOI: 10.5176/2251-3043_6.1.109
ISSN: 2251 - 3043 ; Volume 6, Issue 1; 2018 pp. 116 - 121

different DataNodes. The number of these datanodes is
configured through the parameter dfs.replication in file hdfs-
site.xml which helps to achieve fault tolerance. Each copy is
called as a replica. HDFS uses rack aware data placement
strategy that means if the blocks are placed in one rack then
their copy will be placed in another rack so as to achieve fault
tolerance when there is a node failure or any switch failure.

Following is the default block placement policy present in
HDFS [8]:

 Place the first replica on DataNode [either local or
random node depending upon the HDFS client running
in the cluster].

 Place the second replica on a rack other than first
replica placement.

 Place the third replica on a different data node in the
same rack where the second replica is placed.

 If there are replicas remaining; distribute them
randomly across the racks present in network with the
restriction that, in the same rack there are no more than
two replicas

III. RELATED WORK

Ashwin Kumar et al [4] proposed Sensitive Data Detection
[SDD] Framework which aims at identifying sensitive
information in a dataset in Hadoop. This paper automates
finding of sensitive information based on the dataset itself and
the related datasets when the data owner doesn’t provide any
information on how the dataset should be used. Data Similarity
Analyzer (DSA) implemented using Markov’s algorithm
estimates the similarity between datasets by combining the
context similarity and usage pattern similarity. The advantage
is that sensitive data can be handled as per the requirements.
The limitation is that the author does not take into
consideration about data replication and the turn-around time
because this will add an overhead in the execution time.

JiongXie et al. [5], describes the need of Hadoop for data-
intensive nature systems in heterogeneous clusters such as data
mining systems or web indexing. Data locality plays a key role
in improving MapReduce performance. In a heterogeneous
cluster, high computing power nodes compete with that of low
computing power node so there is often data movement from
low computing power node to high computing power node
thereby reducing the performance and leads to issue of load
balancing. This paper proposes data reorganization algorithm
to support data placement in the cluster as a means to tackle
this issue. The ratio of computing power across nodes called
“computing ratio”. Depending upon computing ratio, fragments
of a file are distributed so that all nodes can complete the
processing of local data around the same time. The advantage
of this work is better utilization of computing power. The
limitation is that the author does not take into consideration
about data replication because of the higher disk space
utilization.

Su-Hyun Kim et al. [6] discusses the disadvantages of the
block access token method used in Hadoop to control the
permission of the data blocks. This paper proposes a secret-

sharing-based block access token for authentication which uses
the secret value shared by NameNode, DataNodes, and clients.
The block access token is encrypted with the secret key. As a
result, the block access token is more secure, and MITM by
attackers is prevented. The authors have used the Shamir
secret-sharing method to share the token between NameNode,
DataNodes and client. The limitation of this work is using extra
measure of adding secrecy for the basic action which will
create overhead in the cluster operation. The advantage is the
additional security in accessing the data blocks.

Jeremy Stribling et al. [7] proposes a new wide-area file
system WheelFS, which allows application control over the
sharing/independence tradeoff, including consistency, failure
handling, and replica placement. WheelFS provides a location-
independent hierarchy of directories and files with a POSIX
file system interface. At any given time, every file or directory
object has a single “primary” WheelFS storage server that is
responsible for maintaining the latest contents of that object.
When a WheelFS client needs to use an object, it must first
determine which server is currently the primary for that object.
The limitation is that Hadoop has the SPOF (NameNode)
which is the master for all the data blocks.

Xianglong Ye et al. [8], proposes advanced block
placement strategy which considers the space available in the
Datanode. The Proposed strategy mainly considers the load
balancing. HDFS mainly considers the network bandwidth but
doesn’t consider the current disk space utilization while placing
blocks. Also, it doesn’t consider the real-time situation of node
so there is need of extra balancing tool called balancer to
achieve the load balancing. Based on these limitations this
author proposes new block placement policy which takes care
about disk space utilization. Load balancing is achieved
through taking lowest utilization node as a priority node. The
advantage of paper discussed above is, there is proper load
balancing based on real time situation of Datanode and prior
known disk space utilization before placing block. Hence, no
load balancer is needed. The limitation is that there is control
overhead if large numbers of datanodes are present in Hadoop
cluster.

Madhu Kumar et al. [13] proposed "A Dynamic Data
Placement Scheme for Hadoop Using Real-time Access
Patterns” which analyzes the real-time access patterns of data
that is consumed by users. Data is placed near to users so that
access time is reduced and bandwidth utilization is proper. In
real situation, ideal nodes are chosen based on who is accessing
the data node frequently, and choosing most relevant location.
The distance is found using ping’s RTT (round trip time). The
benefit of this work is choosing Datanode based upon real time
condition. This paper proposes lightweight extension for
Hadoop called CoHadoop [14]. Co-location is achieved by
adding a configurable property called locator, locator table is
maintained at master-node and data placement policy is
modified so that it uses locator while placing blocks. A file
which does not have any locator is placed with default block
placement strategy.

GSTF Journal on Computing (JoC) Vol.6 No.1 2018

© Th e Author(s) 2018. This article is published with open access by the GSTF

IV. SENSITIVITY-AWARE SECURE DATA PLACEMENT

STRATEGY FOR HADOOP (HADOOPSEC)

A. HadoopSec Architecture

Fig. 1 shows the design of Sensitivity Aware Data
Placement Strategy for Hadoop. As per existing Hadoop, the
input file will be split into block chunks of either 64mb or
128mb size. The process flow in the design is as below.

 Client splits the input file into chunks of blocks of either
64MB or 128MB based on configuration.
 While sending the request, client provides the affinity

levels of data optionally,
 For each block, the client requests NameNode for the

set of datanodes into which the block chunk needs to be
written.
 NameNode first consults the Rack Awareness Script to

get the current datanode layout snapshot.
 Then it internally consults the prescriptive analytics

program, which takes multiple inputs and suggests the
datanodes that can hold that block chunk.
 The datanodes list is then sent to client by the

namenode
 Client then writes the data to the datanodes

sequentially.
 This process is followed for the other blocks as well.

Figure 1. HadoopSec Architecture.

The Prescriptive Analytic Program Block is the key player
in the overall design. It is used to classify the datanodes based
on the sensitivity and quite a few other aspects. It uses
unsupervised machine learning algorithm to predict the
datanode which can host the data block. Unsupervised
Algorithm takes the following configurations as input.

1) Tagging Dictionary

This configuration file will contain the client defined
affinity levels between different groups whose data lies
inside Hadoop.

2) Sensitivity CFG

This configuration file will contain the sensitivity levels of
the file information that is to be placed inside Hadoop.

3) Topology CFG (The presudo code can come after this
section)

This is the system configuration file of the cluster topology
design.

In addition to these, the output of the rack awareness script is
also used as an input by the algorithm. Using these, it deduces
the datanodes affinity levels for the block which needs to be
written into HDFS. The datanodes are formed into different
clusters and the best datanodes are selected as the preferred
location for the data block to be written.

B. Proposed HadoopSec Algorithmic Soultion

HadoopSec uses the below algorithm which takes the Tagging
dictionary, Sensitivity CFG, Topology CFG and Rack-
Awareness output as inputs and provides the output of best
suitable data nodes for block placement.

HadoopSec Algorithm
Input: Tagging dictionary, Sensitivity CFG, Topology CFG
and Rack-Awareness output (Matrix of feature vectors F –
individual vectors are denoted by fi)
Parameters: Clustering similarity threshold γ
Output: Block-placement Output (a set of ‘k’ clusters)

Step1: Load the input files
Step2: Cleanse the data
 Step2a: Impute the missing values (if any)
 k-Means clustering (as an example) cannot
deal with missing values. Any observation even with one
missing dimension must be specially handled. If there are only
few observations with missing values then these observations
can be excluded from clustering. However, this must have
equivalent rule during scoring about how to deal with missing
values. Since in practice one cannot just refuse to exclude
missing observations from segmentation, often better practice
is to impute missing observations.
 Step2b: Handle Categorical variables
 If it’s an ordinal variable (large, medium or
small etc.,) it can be replaced by 5/10 etc.,). If it’s a cardinal
variable (like age-group, income group) they must be
translated to binary format)
 Step2c: Format the variables (date, numeric and
string)
 Step2d: Random initialization – k-Means clustering
is prone to initial seeding i.e. random initialization of
centroids which is required to kick-off iterative clustering
process. Bad initialization may end up getting bad clusters.
Step3: Initialize by choosing Fsub , a subset of vectors from F
 while un-clustered members of Fsub remain
 Compute pairwise co-relations between all
vectors in Fsub
 Find the vector with the largest number of
“close” neighbors,
 with “close” defined as correlation > γ

GSTF Journal on Computing (JoC) Vol.6 No.1 2018

© Th e Author(s) 2018. This article is published with open access by the GSTF

 Add this vector to the list of cluster centers,
and remove it
 and all its close neighbors from Fsub
 end while

 while un-clustered members of F remain
 Choose a new Fsub, a subset of vectors from F
 Compare Fsub, vectors to all previously found
clusters:
- Compute correlation with all cluster centers
- Identify any vectors in Fsub that are “close” to previously
found centers (correlation > γ)
- Remove these vectors from Fsub
while un-clustered members of Fsub remain
 Continue clustering logic from:
 //clustering step from Fsub
end while
end while

Step4: Allocate the blocks based on the output of clustering to
ensure security
Step5: Repeat Step1-Step4 for future data and store the output
Step6: Compare the cluster information with the various
inputs to come up with association for prescriptive analysis
(i.e. compare associating clusters with the historical
information classifications)

C. Desciption of the algorithm

The sensitivity and topology CFG files form the basis of the
input files. The features from these 2 files are merged with the
tagging information (whether the data is critical or not etc.,).
Once the master input file is prepared, standard data
transformation procedures are carried out (like missing data
treatment, formatting of variables, creation of dummy
variables etc.,). The information classification variable
(example) is chosen as the dependent variable and the other
features would be independent variables based on which the k-
means clustering would be carried out. To kick off the
clustering process, initial seeding is provided to set up the
initialization of centroids. The clustering algorithm would
eventually compute pairwise correlations between all the
“Fsub” (subset of the entire feature list) number of
independent variables or features to identify the vector with
the largest number of “close” (defined by setting the threshold
parameter) neighbors. This vector would now be added to the
list of cluster centroids and then remove the same vector from
its closest neighbors from Fsub. This logic is continued
iteratively till the pre-specified set of “k” clusters is reached.
The information blocks are allocated based on the output of
clustering process to ensure security. The outputs of the
successive clustering runs are stored. These historical
associations between clusters (across multiple runs) would
provide input to make the clustering engine intelligent and
prescriptive in its nature.

V. CONCLUSION

As Hadoop turns out to be most sought out framework for
data analytics and processing, it also brings apprehensions

about access control, security and privacy along with it. Present
security mechanisms in Hadoop are not adequate enough to
protect the sensitive information from misuse. In addition, as
Hadoop currently supports only basic data placement strategy,
the issue of accessing sensitive information by misusers is
highly possible. In this paper, the proposed Sensitivity Aware
Data Placement Strategy for Hadoop (HadoopSec) framework
brings down the risk level of placing sensitive data items in
Hadoop. The sensitive information configuration is solely
based on the information provided by data owners or by based
on intuition. The proposed framework will work for any type
of sensitivity data requirement. Our experimental results show
that there is an overhead posed by the proposed framework to
the existing Hadoop implementation. But this is a trade-off for
protecting sensitive information in Hadoop.

REFERENCES
[1] Madhan Kumar Srinivasan, K. Sarukesi, Paul Rodrigues, M. Saimanoj,

P. Revathy, “State-of-the-art Cloud Computing Security Taxonomies –
A classification of security challenges in the present cloud computing
environment,” ACM, Aug. 2012, pp. 470-476, DOI:
10.1145/2345396.2345474.

[2] Madhan Kumar Srinivasan, K. Sarukesi, K. Ashima, P. Revathy,
“eCloudIDS – Design Roadmap for the Architecture of Next-generation
Hybrid Two-tier Expert Engine-based IDS for Cloud Computing
Environment,” Springer CCIS, Springer Verlag-Heidelberg, USA, Sep.
2012, pp. 358-371, Service Vol. 335, DOI: 10.1007/978-3-642-34135-
9_36.

[3] Madhan Kumar Srinivasan, K. Sarukesi, K. Ashima, P. Revathy,
“eCloudIDS Tier-1 uX-Engine Subsystem Design and Implementation
using Self-Organizing Map (SOM) for Secure Cloud Computing
Environment,” Springer CCIS, Springer Verlag-Heidelberg, USA, Sep.
2012, pp. 432-443, Service Vol. 335, DOI: 10.1007/978-3-642-34135-
9_42.

[4] Ashwin Kumar TK, Hong Liu, Johnson P Thomas, Goutam Mylavarapu,
“Identifying Sensitive Data Items within Hadoop” 2015 IEEE 17th
International Conference on High Performance Computing and
Communications (HPCC), 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security (CSS), and 2015 IEEE 12th
International Conf on Embedded Software and Systems (ICESS).

[5] JiongXie; Shu Yin; Xiaojun Ruan; Zhiyang Ding; Yun Tian; Majors, J.;
Manzanares, A.; Xiao Qin, "Improving MapReduce performance
through data placement in heterogeneous Hadoop clusters," 2010 IEEE
International Symposium on , vol., no., pp.1,9, 19-23 April 2010.

[6] Su-Hyun Kim, Im-Yeong Lee, “Data Block Management Scheme Based
on Secret Sharing for HDFS” 10th International Conference on
Broadband and Wireless Computing, Communication and Applications,
2015

[7] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer,Jinyang Li,
M. Frans Kaashoek, and Robert Morris, “Flexible, Wide-Area Storage
for Distributed Systems with WheelFS”, NSDI ’09: 6th USENIX
Symposium on Networked Systems Design and Implementation

[8] Xianglong Ye; Mengxing Huang; Donghai Zhu; PengXu, "A Novel
Blocks Placement Strategy for Hadoop," Computer and Information
Science (ICIS), 2012 IEEE/ACIS 11th International Conference on ,
vol., no., pp.3,7, May 30 2012-June 1 2012

[9] 7. Wang, J.; Xiao, Q.; Yin, J.; Shang, P., "DRAW: A New Data-
gRouping-AWare Data Placement Scheme for Data Intensive
Applications With Interest Locality," Magnetics, IEEE Transactions on ,
vol.49, no.6, pp.2514,2520, June 2013

[10] Krish, K.R.; Anwar, A.; Butt, A.R., "hatS: A Heterogeneity-Aware
Tiered Storage for Hadoop," Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium on , vol., no.,
pp.502,511, 26-29 May 2014

[11] Nishanth, S.; Radhikaa, B.; Ragavendar, T.J.; Babu, C.; Prabavathy, B.,
"CoHadoop++: A load balanced data co-location in Hadoop Distributed

GSTF Journal on Computing (JoC) Vol.6 No.1 2018

© Th e Author(s) 2018. This article is published with open access by the GSTF

File System," Advanced Computing (ICoAC), 2013 Fifth International
Conference on , vol., no., pp.100,105, 18-20 Dec. 2013

[12] Shabeera, T.P.; Madhu Kumar, S.D., "Bandwidth-aware data placement
scheme for Hadoop," Intelligent Computational Systems (RAICS), 2013
IEEE Recent Advances in , vol., no., pp.64,67, 19-21 Dec. 2013

[13] Poonthottam, V.P.; Madhu Kumar, S.D., "A Dynamic Data Placement
Scheme for Hadoop Using Real-time Access Patterns," Advances in

Computing, Communications and Informatics (ICACCI), 2013
International Conference on , vol., no., pp.225,229, 22-25 Aug. 2013

[14] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, J.
McPherson. "CoHadoop: Flexible Data Placement and Its Exploitationin
Hadoop," In proceedings of 37th International Conference on Very
Large Data Bases, 2011, Pages 575-585, Seattle, Washington.

GSTF Journal on Computing (JoC) Vol.6 No.1 2018

© Th e Author(s) 2018. This article is published with open access by the GSTF

