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Abstract—this research proposed the human activity 

recognition system that described complete flow of processes from 

lowest process (dealing with images) to highest process (recognize 

human activity). We proposed human action recognition that 

manage image sequence then recognize human action with simple 

human model by model-based recognition technique. The 

experimental result shows good accuracy which up to 93% 

correctly recognized. We proposed the human activity process 

with 3 methods that consecutive improved. All of those methods 

can use the result of action recognition as inputs. First method is 

FSM recognizer. The human model in Finite State Machine (FSM) 

recognizer can be modeled by rational condition that make it easy 

to understand and consume low computation cost but it hard to 

define complex activity condition so it is unsuitable method for 

complex activity. The second recognizer applied Hidden Markov 

Model (HMM) for activity modeling. The HMM recognizer can 

dealing with much more complex activity and give fair recognition 

rate. However, HMM recognizer is not involve feature priority 

that should has effect to accuracy so we proposed the third 

recognizer that used graph similarity measurement for activity 

modeling and activity classification. The third one, Graph 

Similarity Measurement (GSM) recognizer involved feature 

priority for recognition method then show better result than 

HMM in most measurement. GSM recognizer has ~84% accuracy 

in average. FSM recognizer is suitable for simple activity with low 

computation cost while HMM is suitable for much more complex 

activity and use single feature for recognition process. However, 

HMM method may not give best result for the activity that use 

multiple features. GSM is also suitable for complex activity and, 

furthermore, give better result than HMM for the activity that 

trained from multiple features.     

Keywords—activity recognition; action recognition; finite state 

machine; hidden markov model; graph similarity 

I. INTRODUCTION 

Human activity recognition from videos shows importance 

roles in many automatic event detection and recognition 

applications like surveillance system, elder or patient 

monitoring. Its ability also apply to context awareness 

application in many fields like industrial, medical and 

educational domains.  

We can found many papers that proposed activity 

recognition methods in various ways such as [8, 9, 10, 11 and 

12]. For instance, some papers tried to learn activity pattern 

from data in the scene [13, 14], while some interesting papers 

used manual defined model for a particular activity recognition 

[15, 16]. However, many of its share the same idea that is 

matching unknown sequences with references to recognize a 

particular activity. Our works also follow this concept too. 

Various techniques are used to tackle activity recognition 

problems. Finite State Machine (FSM) is one of its. FSM is 

mathematical model which can use to design sequential logic 

circuit. The pattern of activity can be described by state 

machine with specific transition. FSM model is good for human 

perception. It is easy to understand, required low computation 

cost and can be designed with minimal effort. However, FSM 

quite sensitive to noise and may not suitable for complex 

sequence design. FSM is used in many papers like [17, 18, 19, 

and 20]  

Another widely used technique is Hidden Markov Model 

(HMM). HMM is statistical model that can use to model 

activity by given observation sequences. The recognition 

process can be done under statistical measurement between 

unknown sequence and particular activity models. HMM can be 

applied in many ways for solving various problems in several 

works such as [21, 22, and 23]. HMM can dealing with complex 

sequences but ordinary HMM may not has enough flexibility 

for multiple features with coming in separate sequences.  

Graph theory used in broad fields such as chemical [1], 

biology [2], social network [3] and computer vision [4, 5]. 

Graph theory also applied to activity recognition [6, 7]. This 

theory shows ability to represent complex pattern in an easier 

way and it has flexibility to adjust itself to tackle many 

problems in various ways that still based on graph theory. Its 

flexibility can be applied to some condition that can take 

advantage over ordinary HMM. 

This paper proposed human activity recognition system that 

consist of several processes with many methods. First process 

is action recognition that used model-based method. The result 

of first process can use as input for next process. Second process 

is activity recognition. This process has 3 different methods 

including: FSM, HMM and GSM. Each method has its own 

advantage and limitation that will be described in further 

section.     
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II. SYSTEM OVERVIEW

Our system begin with fetch image from video or camera 

then send image sequence to action recognition process that 

used motion/texture based for human detection and tracking.  

In action recognition process, complex human body 

structure will be reconstructed into 3 simple parts (head, torso 

and legs) with 2 internal body structure vectors and 3 

movements vectors (see figure 1 in action recognition process 

part). Structure vectors and movement vectors are used to 

define action recognition condition. In the meantime, 

movement features are calculated from tracking method. The 

result will gives action sequence with movement features that 

used in activity recognition (see details in section III).  

 The Activity recognition process is designed for support 

both simple activity and complex activity with appropriate 

computation cost.  For simple activity, Finite State Machine 

(FSM) handle this task with manual defined activity pattern. 

FSM can do the job with fast computation. For complex 

activity, HMM and GSM will take the job instead. Both 

methods is more suitable than FSM because complex pattern is 

hard to define manually. HMM can makes activity model with 

training process then classify activity by statistical 

measurement. GSM used learning method based-on graph 

theory. Statistical models are used for recognize activity with 

multiple features. Furthermore, our proposed GSM shown the 

better recognition results over ordinary HMM (the details 

described in section IV). 

III. ACTION RECOGNITION

We can recognize human action from image sequences by 4 

sub-process including: (A) Motion Segmentation (B) Human 

Structure Reconstruction (C) Human Model Tracking and 

Parameter Calculation (D) Action Recognition. 

A. Motion Segmentation

This process focus to segment the region that human

appeared. New incoming person in the scene should be detected 

as motions first so background subtraction technique is used for 

detect motion regions in image sequence for first time new 

incoming person locating. For reduce noise in detection 

process, morphological opening and closing filters are applied 

to images too.  

Detected motion regions of a person may have several 

pieces because of fragmentation from imperfect motion 

detection process so the motion regions that stay very close to 

each other will be considered as same object. After merging 

process, the new detected regions will be segmented by color 

difference. 

Figure 1 Human Activity Recognition Overview 

After color segmentation process, we have a new appeared 

motion regions that segmented by texture (the group of color 

that know exactly position) that are used in human structure 

reconstruction process.   

Image Fetching 

Activity Recognition 

Action Recognition (Model-based) 

Possible Activity(s) 

en wk si … 

FSM 

Image Sequence 

HMM 

Action Sequence with 

Movement Features 

GSM 
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(a)                            (b) 

Figure 2 Human Segmentation  

(a) Person in image that segmented region by

color segmentation 

(b) Simplification of human structure

B. Human Structure Reconstruction

This process focus to matching new detected motion regions

with a predefined simple human structure which has only 3 

parts including head, torso and legs (2 legs are merged into 1 

part). Each part is represented with ellipse (see Figure 2 (b)) 

that can has resizing and tilt depend on new appearance from 

moving.  

Figure 3 Simple human model with parameters 

From 3 simple parts, we defined internal structural 

parameters of our simple model that described relation between 

head, torso and legs. The internal structural parameters 

including (1) ��� represent relation between torso and head (2)

��� represent relation between torso and legs. Both ��� and ���  are

vectors that reflex 2 relations of body part including distance 

and angle. 

We also defined three external structural parameters that 

show movement of each human model part. The external 

structural parameters including (1) ���� represent a movement

of head (2) ���� represent a movement of torso (3) ����
represent a movement of legs. As same as internal structural 

parameters, all of external structural features are vector that 

show 2 factors including moving distance and direction. 

New detected motion regions are matched with our simple 

human model by physical human structure constraint with 

standing action. After matching process, we can suddenly initial 

internal structural parameters. For external structural parameter 

initialization, we need to wait until a movement detected. 

C. Human Model Tracking and Parameters Calculation

This process focus to track human movement through frame

by frame. Each part in model is tracked separately by 

continuous adaptive mean-shift (Camshift) with texture 

property.   

In human reconstruction process, we get human position 

parts with its size and texture property. The process is executed 

separately on each part, the texture property will be converted 

to probability of color then project back to image in term of gray 

scale image. Previous position and size used as initial search 

window for start finding new position and new size by 

calculating maximum of probability distribution in probabilistic 

gray scale image. After convergence of search window is 

reached, we known the new position and size of tracked part.  

New position of human model parts (head, torso and legs) 

are used for calculate internal [�	�,�	�] and external parameters

[�	��,�	��,�	��] (see Figure 3).

The internal parameter vectors [�	�,�	�] represent 2

characteristics including distance [v�	�
 ,	v�	�

] and angle [v�	�
θ ,v�	�

θ].

The external parameter vectors [�	��,�	��,�	��] also show 2

characteristics including direction [v�	��� , v�	��� , v�	��� ] and moving

distance [v�	�� , v�	�� , v�	�� ].

The distance parameters like [v�	�
 ,	v�	�

,	v�	�� , v�	�� , v�	�� ] can

calculated from previous position and current position in term 

of point(coordinate). The angle and direction like [v�	�
θ ,v�	�

θ,	v�	��� ,

v�	��� , v�	��� ] can also calculated by those coordinates too. We can

calculate those parameter with below equation. 

v�	 � ���� � ���� � ��� � ����

v�	θ � tan��
��� � ���
��� � ���

Where: 

v�	  is distance parameter

v�	θ is angle or direction parameter

(x1,y1) is a coordinate of previous position 

(x2,y1) is a coordinate of current position 

From internal structural and movement parameters, we can 

create related parameters that show more meaningful action 

describing (described in next section).  

�	�

�	�

�	��

�	��

�	��

�	�

�	�

�� �	�� 	
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D. Action Recognition 

From experiment, we have discovered that human activities 

can decomposed into basic 5 actions including: (1) standing, (2) 

walking (3) sitting (4) bending (5) laying.  

The action recognition process use internal structural and 

movement parameters for recognize action. The condition of 

action recognition process come from the pattern that shown in 

observing both internal and external parameters when a person 

act in difference actions (see Figure 4 and Figure 5). 

 

 
Figure 4 the patterns of parameters and its changing when 

person do the difference action 

Figure 4 shows value changing of our parameters in variety 

of actions. As you can see, each action has certain parameters 

pattern so most of our target actions can be recognized with 

rational parameters pattern define.     

We have 5 target actions including: standing, bending, 

sitting walking and laying. Each action has obvious pose (see 

Figure 5) that can be represented in term of internal parameters 

��� and ���  which you can see roughly value range in Figure 4. 

In additional, movement features (�	��,�	�� and �	��) of each 

action also has different patterns so we can use both structure 

and movement features to design action recognition model by 

rational parameter pattern. 

 

       (a) Standing and Walking  (b) Bending 

 
       (c) Sitting                              (d) Laying 

Figure 5 Simple human structure with target actions 

We can organize actions into 2 groups: (1) Static action is the 

action that has at least one non-movement component. (2) Dynamic 

action is the action that all components have movement. 

1) Static Action 

a) Standing features 

The action is considered as standing when head vector 

angle and legs vector angle are almost lay on vertical axis so �	�
! 

will become near zero and �	�
! will become near 180 while all 

component movements are changing to near zero.   

�	�
! ≅ 0, �	�

! ≅ 180, 
&'�	()

*

+,
≅ &'�	(-

*

+,
≅ &'�	(.

*

+,
≅ 0   (1) 

&'�	/
0

+,
< 0   (2), 

&'�	2
0

+,
>0   (3) 

b) Bending 

The action is considered as bending if legs vector angle are 

almost lay on vertical axis (�	�
! near 180) with no moving on 

torso and legs (differential of �	��4  and �	��4  become near 0). 

On the head part, moving down of head will lead to decreasing 

of �	�0  so differential of �	�0  become negative value.   

�	�
! ≅ 180, 

&'�	(-
*

+,
≅ &'�	(.

*

+,
≅ 0  (4) 

&'�	2
0

+,
< 0    (5) 

c) Sitting 

The action is considered as sitting when head vector angle 

is almost lay on vertical axis (�	�
! near 0) and no moving on legs 

parts (differential of �	��4  nearly zero). Our research monitor 

action from side view so sitting condition will make legs part 

has oblique angle (see figure 5 (b) sitting).     

�	�
! ≅ 0, 

&'�	(.
*

+,
≅ 0         (6) 

&'�	/
0

+,
< 0     (7) 

 

2) Dynamic Action 

a) Walking 

The action is considered as walking if model has 

movement on every parts (�	4  on every part are not zero).  

&'�	()
*

+,
≅ &'�	(-

*

+,
≅ &'�	(.

*

+,
> 0  (8) 

 

b) Laying 

The action is considered as laying while angle difference 

on head larger than torso and angle difference on torso is equal 

or greater than angle difference on legs.   

&-'�	()
5

+,-
> &-'�	(-

5

+,-
≥ &-'�	(.

5

+,-
 >0  (9) 

 

Relation between actions can be illustrated as diagram 

below. 
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Figure 6 Static Action and Dynamic Action: thick arrows with 

number represent features that defined above, dash arrows are 

the N/A action transition. 

 

E. Experimental Result of Action Recognition 

We test our method on videos that recorded five peoples 

with different clothes. Each person perform action randomly 

and continuously. Our testing actions consist of 50 bending, 77 

standing, 44 walking, 28 sitting and 11 laying actions.  

 

Table 1 Experimental results of action recognition. 

Actions Number of 

Testing Frames 

Detected 
actions 

Recognition 
rate 

Walking 2243 1809 80.65 % 

Sitting 1220 1089 89.26 % 

Bending 2250 2123 94.35 % 

Standing 2886 2869 99.41 % 

Laying 1334 1334 100 % 

N/A * 999 999 100 % 

Total 10932 9224 93.95% 

 
The table 1, show the result of action recognition. The 

average recognition rate is 93.95%. The lowest rate is about 80% 
that is walking. We found that walking can be wrong recognized 
when both legs are separated. Separated legs can lead to 
incorrect centroid position that will make incorrect recognition 
result. Legs separation problem may can solve by improving 
tracking method. The best case is laying at 100% recognition 
rate. For N/A actions mean the actions cannot recognized by our 
defined model, but it can be identified as the non-definition 
actions showing as dash-lines in the figure 6. 

Our action recognition model still not cover the case that 
camera is perfectly perpendicular to the actions. This case 
inapplicable for our action models. However, this limitation 
maybe eliminated by improving action model definition or use 
multiple camera. 

Online result in video version can be found at 
https://www.youtube.com/watch?v=uzRVd1bRZig.     

IV. ACTIVITY RECOGNITION 

The result of action recognition process is an action that can 
be recognized in every frames so we can get the sequence of 
action from previous method. In additional, tracking process 
also gave us movement features.  

We have inspired idea from DNA (Deoxyribonucleic acid: 
the genetic instructions used in the growth of life) that construct 
very complex life form from a small number of nucleotides (C, 
G, A and T). We mimic DNA concept by describing complex 
thing like human activity with a simple thing like action, 
movement and some additional features. The action sequence 
with movement features can be used as input for describing more 
complex thing like human activity so we proposed human 
activity recognition method which using those features.  

However, human activities have complex details and depend 
on many factors so we need to add more features for cover much 
more possible recognizable activities in future work. We expand 
movement to few features including: velocity, acceleration, 
direction and direction variation. We also add action time period, 
location and object interaction for describe relation between 
person and surrounding environment. 

Features can be grouping into 2 groups including: (1) Major 
symbol (2) Minor symbol. Major symbol is main features that 
defined from actions (detailed in Table 2). Minor symbol is 
additional features that defined from movement features and 
surrounding environment (detailed in Table 3). 

Table 2 Major symbols with meaning. 

Symbol Meaning 

a_en A person come in monitoring area 

a_wk Perform walking action 

a_st Perform standing action 

a_bn Perform bending action 

a_ly Perform laying action 

a_si Perform sitting action 

a_ex A person get out from monitoring area 

 
Major symbols consist of 7 symbols starting with ‘a_’. It 

could directly defined from action recognition result (5 basic 
action) with 2 additional symbols that is enter and exit from 
interested area.  

Minor symbols defined from movement features with some 
presetting of objects position inside interested area. Minor 
symbols consist of 7 sup-group including: (1) velocity (start with 
‘v_’) (2) acceleration (start with ‘ac_’) (3) direction variation 
(start with ‘dv_’) (4) action time period (start with ‘t_’) (5) 
movement direction (start with ‘d_’) (6) current location (start 
with ‘lo_’) (7) object interaction (start with ‘oi_’).  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

     Static Actions 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Dynamic Actions 

  (3)  

Bending (4) 

Sitting (6) 

Standing (1)  

Laying 

Walking 

  (5)  

  (7)  

  (2)  

  (9)  
  (9)  

  (8)  
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Table 3 Minor symbols and meaning. 

Symbol Meaning 

t_l Act with short time period 

t_m Act with middle time period 

t_h Act with long time period 

t_un Unknown time period for first time appearing 

d_n Moving to the north 

d_s Moving to the south 

d_w Moving to the west 

d_un Unknown movement direction for first time 

appearing and no movement action 

d_nw Moving to the north-west 

d_ne Moving to the north-east 

d_sw Moving to the south-west 

d_se Moving to the south-east 

d_e Moving to the east 

dv_l Low direction variation 

dv_m Medium direction variation 

dv_h High direction variation 

dv_un Unknown direction variation for first time 

appearing 

v_l Low velocity 

v_m Middle velocity 

v_h High velocity 

v_un Unknown velocity for first time appearing 

ac_ l Low acceleration 

ac_m Middle acceleration 

ac_h High acceleration 

ac_un Unknown acceleration for first time appearing 

oi_b Move object from the original location 

oi_l Leave unknown object in interested area 

oi_no No interaction with any objects in interested area 

lo_se Person rest on seat 

lo_sp Person stay near special object (the object that can 

have interaction with it) 

lo_bd Person rest in bed 

lo_fl Person stay on floor 

 

A. Finite State Machine (FSM) Recognizer 

FSM is mathematical model that can use to design 

sequential logic circuit. We can easily design FSM model with 

rational condition. The FSM model that defined from specific 

condition would be represented the identity of some specific 

logic circuit.   

Our features are presented in term of symbol sequence and 

we have hypothesis that the human activity can be described 

with combination of some simple things so we can test our 

concept by defining the human activity in term of logic circuit 

that represent some unique activity then test the unknown 

sequence with our defined FSM activity model.  

1) FSM activity modeling 

We used FSM to define human activity model through 

rational logic sequence with our defined symbols. We testing 

our idea with 5 activity models described below. 

 

 

a) Walk Through the Scene 

This activity is the case that person walk through interested 

area without any object interaction and not act in any action but 

only walk. We used 6 symbols for model this activity.  

3 major symbols including: ‘a_en’ (enter), ‘a_wk’ (walk) 

and ‘a_ex’ (exit) that used for describe normal walking pass 

interested area but we need to use additional 3 minor symbols 

for distinguish the purpose of walking that try to make an 

observation that does not a normal walking pass.  

We assume the person who walking inside interested area 

with making large difference direction may don’t want to walk 

pass interested area normally so we used high direction 

variation level (‘dv_h’) for separating a walking for observation 

from normal walking pass interested area. Relation between 

symbols in this activity model show below. 

 
Figure 7 Walk through the scene model 

b) Observation   

This activity describe the person act walking (‘a_wk’) 

and/or standing (‘a_st’) inside interested area with an 

observation purpose. If the person try to make an observation 

inside the interested area we can assume the direction variation 

of this case should be high. Other actions (bending, sitting and 

laying) are not including in this model because we use those 

action in others activities that may have much more meaning 

than an observation. The model detail show below. 

 

 
Figure 8 Observation model 
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c) Rest 

Rest is the activity that person act sitting (‘a_si’) or laying 

(‘a_ly’) inside interested area. However, we need to use 

additional 4 minor symbols that is locations: ‘lo_se’ (seat), 

‘lo_bd’ (bed), ‘lo_fl’ (floor) and ‘lo_sp’ (special object). Those 

symbols can use for separating between normal rest and 

abnormal rest.  

The normal rest can be recognized when person has sitting 

or laying on appropriate location like seat or bed. The abnormal 

rest can be recognized when a person take a rest on unusual 

location like floor or some special object area. The detail of this 

model show below. 

 
Figure 9 Rest model 

d) Browse 

Browse is the activity that person show interesting on some 

object inside interested area. We describe this activity by using 

standing (‘a_st’) and sitting (‘a_si’) with object location 

(‘lo_sp’). Browse is recognized when person act standing or 

sitting near object that can browse or interact with it. The model 

show below.  

  

 
Figure 10 Browse model 

e) Idle 

Idle is the activity that does not match any above activity 

models. 

 

2) Experimental Result of Finite State Machine Recognizer 

Our experiment tested on CAVIAR dataset that consist of 4 

videos for walk, 6 videos for browsing and 4 videos for rest. 

Those video show 23 activities including: 10 walk through the 

scene, 5 browse, 5 rest and 3 observation. The experimental 

result show in table 4 below.  

 

Table 4 Experimental result of FSM recognizer 

True Activity 

R
ec

o
g

n
iz

ed
 A

ct
iv

it
y
 

 observation  abnormal 

rest  

browse normal 

rest 

walk 

through 

observation  1     

abnormal 

rest  

 3    

browse  1 5   

normal  

rest 

   1  

walk 

through 

    10 

Idle 2     

Accuracy (%)  33.33 75 100 100 100 

 

Table 4 show result of FSM recognizer that quite good 

accuracy for walk through the scene, normal rest and browse. 

Those activities have obvious pattern of action changing and 

related features so we can well defined those activity models. 

 For observation activity, we use high direction variation 

(‘dv_h’) as acceptance condition. A person can make an 

observation with short walk distance that lead to occurrence of 

error. Walking with short distance will give a low direction 

variation value that lead to incorrect recognition. 

  For abnormal rest activity, incorrect case appear when 

sitting occur in special object region. That case show an 

ambiguous activity between rest and browse. Person can sit for 

rest near special object without a purpose for browse. This 

situation show that our model still lack of some importance 

features like face direction. 

FSM recognizer can recognize activities with good accuracy 

but still need more features to improve some activities like 

browse and rest. 

Online results in video version can be found at:  

https://www.youtube.com/watch?v=hZB05FoVScs 

https://www.youtube.com/watch?v=RbbITB8HdtA 

https://www.youtube.com/watch?v=9WclVK0HuCI 

https://www.youtube.com/watch?v=jXqMeW9wGQY 

 

B. Hidden Markov Model (HMM) Recognizer 

FSM recognizer suitable for the action that has obvious 
features pattern. FSM model is very easy to define, simple to 
understand and consume low computation cost. However, FSM 
recognizer model quite hard to define complex features pattern 
so we could improve this limitation point by apply alternative 
recognition model that can handle complex features pattern.  

Our features are presented in term of sequence that similar 
to state changing so it reasonable to choose well-known method 
that based-on state changing like HMM for our improvement. 
HMM is a statistical Markov model that come from training 
process so we could apply HMM for complex features pattern 
without manual define like FSM.  
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1) Dataset Preparation and Model Training 

For consecutive improvement and testing of recognition 

method, we decided to use some of previous activities and 

symbols set for modeling and testing on HMM recognizer. 

 We choose 2 FSM activity models that is observation 

activity and walk through the scene activity. Both activities use 

action sequence and direction variation sequence for describe 

the activity so we still use the same sequences for HMM model 

training but we need to re-manipulate it first because HMM 

model training need single a sequence of symbols. New 

symbols can be re-manipulated by matching each symbol with 

other symbols to create the new one.  

From 7 actions symbols and 4 direction variation symbols, 

we can create 28 new symbols (come from matching 7 symbols 

with 4 symbols: 7x4=28). Both action sequence and direction 

variation sequence are represented as single sequence with new 

symbols set but still remain the same order as the old one. 

For observation model, we choose 3 sequences that used in 

FSM recognizer experiment while walk through the scene 

model we choose 10 sequences from FSM recognizer 

experiment and 2 new sequences from other CAVIAR dataset.  

In short, we have 3 sequences for observation model and 12 

sequences for walk through the scene model. 

We have a small number of ideal sequence so we need to 

duplicate our ideal sequence with noise addition for more 

testing accuracy. In additional, we add noise (20%) with 

rational condition on action sequences. For direction variation 

sequences, we also add +/- 20% random value from its previous 

value. The noise addition will give our model more robust to 

noise in real situation and give more precise experimental 

result.  

After sequence duplication and rational noise addition, we 

have 1200 sequences for walk through the scene and 300 

sequences for observation. Half of noisy feature sequences used 

for HMM model training and rest of it used as true noisy feature 

sequences for testing. We also add 1150 false noisy feature 

sequences for walk through the scene activity model testing and 

add 1000 false noisy feature sequences for observation activity 

model testing. The detail about dataset show in table 5 below. 

 

Table 5 Dataset for HMM recognizer for training and testing 

Activities Ideal 

feature 

sequences 

[Training] 

Noisy 

feature 

sequences 

[Testing] 

True  

Noisy 

feature 

sequences 

[Testing] 

False 

Noisy 

feature 

sequences 

Walk 

through the 

scene 

12 600 600 1150 

Observation 3 150 150 1000 

 

 

For model training, we use Baum-Welch algorithm for 

modeling transition and emission probabilities. We setting 

training process with 2 hidden state. The initial transition matrix 

and emission matrix values are set to all equal at the first place. 

 

2) Experimental Result of Hidden Markov Model 

Recognizer 

We choose sensitivity and specificity for measure our HMM 

recognizer performance. Sensitivity and specificity are 

statistical measure of binary classification test. Sensitivity show 

the proportion of correct recognition result for the true noisy 

feature sequences are recognized as it real activity model. 

Specificity show the proportion of correct recognition result for 

false noisy features sequences are recognized as it is not an 

activity that currently considered activity model.  

In short, sensitivity tell us the rate of HMM recognizer that 

can recognize “True Sequences” as “True Activity” while 

specificity tell us the rate that HMM recognizer can recognize 

“False Sequences” as “False Activity”. 

For walk through the scene activity, we had ~92% of 

sensitivity and ~73% of specificity. Most symbols inside this 

activity sequences are not much difference (low symbol 

variation). Our HMM recognizer show best result for sensitivity 

but worst specificity for this model. 

For observation activity, sensitivity (~80%) is lower than 

previous activity but higher specificity (~84%) (see table 6). 

Symbol variation in this activity sequence has more variation 

than previous activity. 

From experimental result, we have the inference that the 

factor that has effect to HMM recognizer performance is a 

symbol variation inside sequences, if sequences has low 

variation of symbol its will gave a high sensitivity but low 

specificity while higher variation of symbol will give more 

balance value between sensitivity and specificity. However, 

average accuracy still over 80%.  

 

Table 6 Experimental result of HMM recognizer 

Activities Sensitivity Specificity 

Walk through the 

scene 

~ 92% ~ 73% 

Observation ~ 80% ~ 84% 

 

C. Graph Similarity Measurement (GSM) Recognizer 

Our proposed methods can apply with many features that 
show in table 2 and table 3. In short, features are including: 
Major symbols (action) and Minor symbols (action time period, 
velocity, acceleration, direction, direction variation, location, 
object interaction). 

HMM recognizer used some of our defined features with 
show ability to manage complex features pattern by model 
training process. This recognizer also show fair recognition 
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result. The activities model under HMM can composed with 
plenty features that may have different priority but HMM 
recognizer is not including features priority for recognition 
process.  

We have hypothesis that feature priority should affect to 
recognition rate so we looking for some statistic model which 
can combined feature priority to its recognition process. When 
we consider our previous model, HMM is a statistic model that 
based-on state changing while FSM also based-on state 
changing too but the changing of FSM is a rational defined. Both 
FSM and HMM model are composed of nodes and connection 
among nodes. The component of both model can be considered 
as graph and its work under its own related theory which show 
quite good result on its own context so we choose to use another 
graph theory for testing our hypothesis. 

Basically, graph (G) consist of nodes (V) and connecting 
edges (A). We can represent our symbol as node and represent 
symbol changing as connecting edge so we can re-define each 
symbol sequence as independence graph with pair set of node 
set (symbols) and edge set (symbol changing). 

From our defined symbols make us have many symbol sets 
including: 

action set: {a_en, a_st, a_wk, a_si, a_bn, a_ly, a_ex}  
action time period set: {t_l, t_m, t_h, t_un}  
velocity set: {v_l, v_m, v_h, v_un} 
acceleration set: {ac_l, ac_m, ac_h, ac_un}  
direction set: {d_n, d_s, d_e, d_w, d_nw, d_ne, d_sw, d_se, 

d_un } 

direction variation set: {dv_l, dv_m, dv_h, dv_un} 
location set: {lo_se, lo_sp, lo_bd, lo_fl} 
object interaction set: {oi_b, oi_l, oi_no}  

Each above set can be considered as independent node set 
which has its own possible finite symbol changing set (edge set) 
so we can said that each symbol set has its own graph model. 

When we have independence graph model for each feature 
(symbol set). We can process each feature data separately. We 
can measure similarity between graph model separately (single 
feature similarity) while we can combine similarity among graph 
models (multiple features similarity) with “weight parameter” 
that mean is we can put the “feature priority” into similarity 
measurement process.  

GSM recognizer apply similarity measurement with weight 
parameter in recognition process. This method show better result 
that affect from feature priority factor that will show in 
experimental result.         

 

1) Definition of Graph Activity Model 

Graph model consist of nodes (V) and edges (A) where 

nodes represent individual symbol with frequency of symbol 

occurrence in sequence and edges represent transition from 

node to the others with frequency of its transition appeared in 

sequence. General form of graph model can be written as  

 

G = (V,A) 

 

When we describe action sequence in term of graph 

model, we can add “act” subscript to V, A and G. For direction 

variation sequence can be modelled by graph model with “div” 

subscript. The graph model of action and direction variation can 

be detailed below. 

 
The graph of actions: 

Gact = (Vact,Aact) 

Where   

Vact = {en, st, wk, si, bn, ly, ex} 

Aact =  Vact x Vact 

 

The graph of direction variation: 

Gdiv = (Vdiv,Adiv) 

Where   

Vdiv = {l, m, h, un } 

Adiv =  Vdiv x Vdiv 

Both Gact and Gdiv are only graph model of individual feature 
(individual symbol set). From this individual feature graph 
model, we can use it to construct more complicate model of 
activity by combining those individual feature graph model into 
single model. We called this new single model as “Graph 
Activity Model” (GAM). 

GAM can be constructed by all features that we defined 
before. However, we choose to use only features that use in 
HMM recognizer for GAM because we want consecutive 
comparison and testing on recognizer improvement. We also use 
same dataset that used in HMM recognizer experiment so the 
features that we use are action (Gact ) and direction variation 
(Gdiv) only. 

 

The Graph Activity Model (GAM) can then be defined as  

GAM = (Gact, Gdiv) 

 

2) Graph Modeling 

Graph modeling is the process that construct statistically 

graph model from symbol sequences. The process consist of 2 

sub-process:  

1) For node (symbol), the statistic of symbol occurrence is 

frequency of each symbol appearing in whole sequence. The 

frequency of appearing for every symbols are counted, ratio 

calculated and normalized into value interval between 0 and 1 

(show as floating number in gray circle with its symbol in figure 

11).   

2) For edge (transition), the statistic of transition between 

nodes and others come from the frequency of transition that 

happen in whole sequence. Those transitions are counted, ratio 

calculated and normalized into value interval between 0 and 1 

like symbol occurrence statistic but transition statistic is done 

separately on each symbols (show as floating number with 

arrow come out from each symbol in figure 11).  
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To illustrate the graph modeling process, we create instance 

of direction variation sequence that use for direction variation 

graph modeling. 

 

Instance direction variation sequence 

= un, l, l, l, l, m, m, m, h, h 

 

Direction variation graph: 

Gdir  = (Vdir,Adir) 

Where   

Vdir  = {l, m, h, un} 

Adir  =  Vdir x Vdir 

={ (l,l)  , (l,m)    , (l,h)    , (l,un), 

           (m,l)  , (m,m)  , (m,h)  , (m,un), 

          (h,l)   , (h,m)   , (h,h)   , (h,un), 

           (un,l) , (un,m) , (un,h) , (un,un)} 

From the instance direction variation sequence, we obtain: 

 Vdir  =  

 

Adir = 

 

 

Vdir consist of 4 symbols including: “l”, “m”, “h” and “un” 

that the number of each symbol is 4, 3, 2 and 1 sequentially. We 

can calculate ratio of each symbol by divide each symbol 

number by total symbol number in whole sequence. For this 

example, ratio of symbol occurrence for “l”, “m”, “h” and “un” 

are (4/10), (3/10), (2/10) and (1/10) sequentially so we can put 

those value into row vector (Vdir ) that show above.    

Adir consist of 16 possible symbol transition that come from 

Vdir x Vdir . The meaning of pair like (l,l) is a transition from 

symbol “l” to symbol “l” as same as the other pair in Adir . From 

instance sequence, we have 9 transition including: (un, l), (l,l), 

(l,l), (l,l), (l,m), (m,m), (m,m), (m,h), (h,h).  

We can calculate frequency of symbol transition on each 

symbol by counting number of each transition that going out 

from same symbol then divide by all number of transition that 

going out from that symbol. For instance, we want to calculate 

frequency of symbol transition of “l”. We must consider the pair 

that first symbol is “l” like (l,l), (l,l), (l,l), (l,m). Those 4 

transitions can be categorized into 2 groups that is 3 transition 

of (l,l) and 1 transition of (l,m). From those number, we can get 

frequency values: 

0.75 or 3/4 for (l,l) transition  

0.25 or 1/4 for (l,m) transition 

0 or 0/4 for (l,h) transition 

0 or 0/4 for (l,un) transition 

 

The above frequency values are shown in Adir matrix at first 

row. We can repeat this process with rest of transitions then all 

elements of Adir matrix will be filled. From instance, the 

direction variation sequence with graph modeling process, we 

can obtain graph below. 

 
Figure 11 Example of graph model (direction variation) 

Any feature sequences can be modelled by graph modeling 

process then we can wrap our desire feature graph models to 

GAM after graph modeling is done. However in this work, we 

had interested in action sequence and direction variation 

sequence only so we can simply define GAM as (Gact, Gdiv). 

    

3) Target Activities Modeling 

Target activity is the activity that we want to recognize. We 

can model the target activity by applying graph modeling with 

training dataset that contain only target activity sequences. We 

use the same training dataset (show in table 5) with HMM 

model training for target activity modeling.  

We have 2 target activities: 1) walk through the scene model 

trained from 600 sequences 2) Observation model trained from 

150 sequences. All sequences already have noises (around 

20%) so our model can dealing with some amount of noise. 

After training process, we obtained 2 target activity models 

in term of GAM that wrapped Gact and Gdiv inside itself which 

each GAM has its own Gact and Gdiv that come from trained with 

its own dataset. 

 

4) Activity Recognition by Graph Similarity Measurement 

(GSM) Method 

Target activity model (GAM) is a group of graph models 

that trained from many target activity sequences so those graph 

models represent statistical pattern of target activity in term of 

symbol occurrence (node: V) and symbol changing (transition: 

A). We can recognize any sequences with some target activity 

by create new graph models with considered sequences then 

measure similarity between those new graph modes (new 

GAM) with target activity model. 

un 
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l 

(0.4) 

m 

(0.3) 

h 

(0.2) 

0.25 

1 

1 

0.75 

0.25 

0.67 
0.33 

0 

0 

0 

0 

0 

0 

0 

0 0 0 
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GAM is wrapper of graph models. GAM can contain many 

features that represent as graph models. We can measure 

similarity between GAM by measure similarity of sub-graph 

models inside each GAM then combined each sub-similarity 

with weight parameters for calculate overall similarity of GAM. 

The weight can considered as priority of each features. The 

applying of weight (feature priority) in recognition process is 

the advantage over the ordinary HMM that would show in GSM 

experimental result. 

Measurement similarity between 2 GAMs have limitation 

that both GAM must contain same features in term of sub- 

graph models. Each feature in both GAM are measured 

separately. Overall similarity of GAMs will be calculated after 

sub-similarities are measured.        

We will describe similarity of each graph model first. The 

variable of graph model in target activity model will have “ta” 

subscript while the variable of graph model in considering 

activity model will have “ca” subscript. The subscript “sim” 

means that value is similarity and the subscript “_w” means that 

value is weighted by some weight value.   

 
The similarity measurement between two graphs         
Gta = (Vta, Ata) and Gca = (Vca, Aca),  
can be calculated as follow.  

Gsim(ta,ca) = aVsim + (1-a)Asim_w  (1) 

Vsim  = (1- |vta – vca|) avgT 

Asim_w  = vta Asim 

Asim  = (1-|Ata – Aca|) avgT 

 

Where 

Gsim(ta,ca) is similarity between graph Gta and Gca 

Vsim is similarities between node Vta and Vca 

Asim is similarities between transition Ata and Aca 

Asim_w is a weighted similarity of Asim  

vta is a row vector of node of graph in target activity model 

vca is a row vector of node of graph in considering activity 

model  

Ata is a matrix of transition of target activity model  

Aca is a matrix of transition of considering activity model 

a is a weight of similarity combination between V and A 

avg is a row vector that contain n elements, which n is a 

number of nodes, and each element value is equal to 1/n. 

 

Similarity of node (Vsim) and edge (Asim_w) are measured 

separately then combined in last step that show in equation (1). 

For Vsim, we can calculate similarity directly but Asim_w 

calculation would have more reasonable calculation if we use 

symbol occurrence in target activity as weight. We use that 

weight with 2 reasons: 1) symbol changing (transition) 

similarity on node that have higher occurrence should have 

more weight than the lower one 2) The target activity model 

come from training with large amount of sequences so it should 

have more reliable than considered model.  

    

We also put variable weight (a) for combination of V and A 

in equation (1). However, we set it to 0.5 in this experiment that 

mean is the weight is equal in combination. 

Similarity of each graph model that we described above is 

the similarity of each feature in GAM. We can call similarity of 

each feature as sub-similarity. After finish sub-similarity 

calculation, we can combine all sub-similarity into single 

similarity value that will become a similarity of graph activity 

model (similarity of GAM). 

 

The similarity of graph activity model can be calculated as 

below 

 

GAM(ta) = (Gta_act, Gta_div) 

GAM(ca)     = (Gca_act, Gca_div) 

gmsim(ta,ca)   = [Gsim(ta,ca)_act, Gsim(ta,ca)_div] 

gw   = [Gact_w, Gdiv_w] 

GAMsim(ta,ca)_w = gmsim(ta,ca) gw
T  (2) 

Where  

GAM(ta) is model of target activity 

GAM(ca) is model of considering activity 

gmsim(ta,ca) is row vector of similarity between  GAM(ta) and 

GAM(ca) 

gw is row vector of feature weight  

GAMsim(ta,ca)_w is weighted similarity between GAM(ta) and 
GAM(ca) 

The equation (2) show the similarity between target activity 

model and considering activity model. The result of similarity 

is a floating number that has interval 0 to 1. The priority of each 

feature can be setting in gw which can make the difference result 

when those weights are changed. 

 

5) Experimental Result of Graph Similarity Measurement 

Recognizer 

The experiment is tested with noisy sequences that used in 

HMM recognizer experiment. The details of test sequences are 

shown in table 5.  

GSM recognizer involve features weight in recognition 

process. This weigh feature is the significant factor that 

difference from ordinary HMM. In table 7 below, you can see 

feature weigh column that show weight ratio between action 

and direction variation (act : div). We vary weight with 3 level 

on each activity testing. 

For GSM first activity, walk through the scene activity, the 

best weight is 90:10. Max sensitivity and specificity are around 

78% and 80% sequentially. In this activity experiment, we 

found that while action feature weigh increase, the accuracy 

also increase too. This relation shows the obvious effect of 

feature priority that reflex to accuracy.  

The GSM second activity, observation activity, the best 

weight is 50:50 which give best sensitivity and specificity are 

around 80% and 84%. The weight changing trend on second 

activity is not the same with first activity. While action feature 
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weight increased to 90:10, the accuracy decreased. From 

experiment, we found that the feature weight has effect to 

accuracy (in term of sensitivity and specificity) as same as the 

experiment in previous activity testing. In addition, we found 

that the appropriate features weight is not always linear and its 

appropriate value depend on each activity target. 

From GSM experiment show that the weight (feature 

priority) has effect to recognition result accuracy and the 

relation between weight and accuracy may not always have 

same changing trend. When compare best GSM recognizer 

result with HMM recognizer result, we found that the result of 

GSM is better than HMM on most measurement. The first 

activity result, GSM has better specificity (+7%) but worst 

sensitivity (-14%) while the second activity result, GSM show 

better result on both sensitivity (+9%) and specificity (+4%). 

From experiment, the GSM recognizer which involve features 

weight have better result than the HMM recognizer that does 

not involve features weight.   

Table 7 Experimental result of GSM recognizer compared to 

HMM recognizer 

GSM HMM 

Activity Feature Weight  

act : div 

Sensitivity and 

Specificity 

Sensitivity 

and 

Specificity 

Walk 

through 

the scene 

10:90 Sens: ~50% 

Spec: ~51% 

N/A 

50:50 Sens: ~73% 

Spec: ~72% 

N/A 

90:10 Sens: ~78% 

Spec: ~80% 

Sens: ~92% 

Spec: ~73% 

Observatio

n 

10:90 Sens: ~87% 

Spec: ~88% 

N/A 

50:50 Sens: ~89% 

Spec: ~88% 

Sens: ~80% 

Spec: ~84% 

90:10 Sens: ~86% 

Spec: ~85% 

N/A 

V. CONCLUSION

This paper proposed the complete concept of human activity 

recognition system from basic data (images) to human 

understandable information (activities) through many sub-

methods that proved fair result on experiments.  

Humans in image sequence are reconstruct to simple 

structure then tracked through frame by frame. The internal 

structure and movement features from tracking process can be 

used for human action recognition which applied model-based 

technique. An average accuracy for human action recognition 

is up to 93%.  

The sequence of recognized action with additional features 

can be used to recognize more complex things like human 

activity through various methods. FSM is the first method that 

used for recognize human activity through rational model 

defined with sequential logic circuit condition. FSM model is 

human readable model and easy to design while require low 

computation cost. However, FSM is not good for complex 

activity because its pattern is difficult to design with FSM 

method. FSM recognizer is also sensitive to noise. 

HMM is statistical model which can handle complex 

activity and also more robust to noise. HMM recognizer use 

trained model for recognition process so it is no problem with 

complex pattern of features in any complex activity. HMM 

show fair recognition result with noisy testing sequences. 

However, ordinary HMM in not directly support multiple 

features so we need to re-manipulate data before use those data 

with HMM. From that limitation, HMM recognizer cannot 

utilize the feature priority for maximize accuracy rate. 

GSM is statistical model like HMM but it has much more 

flexibility. GSM also has ability to dealing with complex 

activity and robust to noisy data. This method allow us to 

combine feature priority with GSM recognition process. From 

those reason, GSM can overcome the ordinary HMM by 

involving feature priority in GSM recognition method and show 

better accuracy rate on most accuracy measurement (the correct 

recognition rate is ~84%).    
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