
An Empirical Study of a Hybrid Code Clone
Detection Approach on Java Byte Code

Aritra Ghosh, Young Lee
Department of Electrical Engineering and Computer Science

Texas A&M University - Kingsville
Kingsville, TX 78363. USA

aritra.tech@gmail.com, young.lee@tamuk.edu

Abstract- Code clones increase the complexity of the system;
therefore the software maintenance costs. Code clone
detection techniques have been proposed and evaluated based
on metric value and runtime evaluations. But in the existing
methods, many false positive clones are detected. In this
paper, we suggest a hybrid approach combining Program
Dependence Graph-based technique with Metric-based
technique to improve the precision of clone detection. We
conduct a case study on two open source code Java projects
such as Eclipse-ant and Eclipse-JDT core to show the

effectiveness of our tool. The application of this hybrid
technique is then compared with the existing clone detection
technique, CloneDR. The result shows that our tool increases
the performance in precision, recall, false positive and false
negative compared to CloneDR.

Keywords- Code Clone, Byte code, Metrics, False positive,
False negative, Precision, Recall.

1. INTRODUCTION

In today’s community, the software has become the

important entity and is an integral part of our life. Due to

the development of technology, writing source code for a

software system is no longer the most difficult part of
software development in respect to cost and effort.

Relatively, software maintenance and evolution have

become the most challenging parts [1]. The term software

maintenance refers to the modification of a software

product after delivery to correct faults, to improve the

performance or other attributes [2]. On the contrary,

evolution refers to the process of developing

software initially, then repeatedly updating it for various

reasons [3]. Although for small systems, maintenance and

evolution may not be an issue; for large software systems,

their effects cannot be ignored. It has been found that
almost 40-80% (average 60%) of the costs of developing a

typical software system is consumed on the maintenance

phase [4], which indicates there is a need for state-of-the-art

techniques, methods, and tools to support maintenance and

evolution.

Programmers often use code fragments by simple

copy and paste them with or without adaptation. These

identical code fragments are called as software clones [5].

Due to the copy-paste habits of programmers, clones are

inevitable in software development. Previous studies have

reported that the total quantity of cloning in software
systems varies from 5-15% and can be even 50% of the

main code [6]. Although some positive impacts of clones

have been identified, their negative impacts cannot be

ignored (e.g. increased program size, update anomalies) [7].

A code fragment having a bug causes the same problem to

all other fragments copied from it. Fixing the bug requires

the developer to check and update all copied locations as

necessary. Enhancing a code fragment also requires the

developer to look for its duplicated code fragments to

ensure that changes are propagated to all desired locations,

which also multiplies the work need to be done [8]. So,
clones are treated as a “bad smell” [9] in code and are a

major contributor to project maintenance difficulties.

Table 1.1: Description of different Clone Detection Techniques

Techniques Description Example

Text-based 1. Compare every line of code as a string.
2. Oldest and simplest technique.

3. It can detect code clones quickly compared with other detection

techniques.

4. This technique requires no pre-processing on the source code.

SDD, NICAD, DuDe

Token-based 1. The source code is compiled and transformed into a sequence of

tokens.

CCFinder, iClones,

CP-Miner

DOI: 10.5176/2251-3043_5.2.367

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

34

2. Detects similarities of tokens as code clones.

3. Detection speed is lesser as compared with text-based

techniques.

Metric-based 1. Collect various metrics vectors and compare them.

2. The source code is transformed to its equivalent AST or PDG

representation.

Davey

AST-based 1. A program is parsed to an abstract syntax tree and then divided

into sub trees.

2. Common sub trees are regarded as code clones.

Asta, Tairas, Deckard

PDG-based 1. Code clones are detected by comparing PDGs created from
source code.

2. Isomorphic sub graphs are regarded as code clones.

Duplix, Gabel

There are various clone detection techniques which can

be classified into following categories [10]; According to

Murakami et al., some text or metric-based techniques

cannot identify code clones; whereas AST or PDG-based

techniques need much time to find code clones. Text-based

techniques can able to locate type I clone only; whereas

token-based techniques can identify Type II clone also.

AST-based techniques can find type III clone but this
approach requires complex algorithm and parser and metric

based tools are suitable for a large software system; but it

cannot be applied to source code directly [11].

Program Dependence Graph-based technique is the

only way which can detect code clones syntactically and

semantically both. C. K. Roy et al. and Bellon et al. proved

that technique indicates small recall and precision value.

There are certain hybrid tools which are a combination of

the abstract syntax tree, text-based or metric based

approach; but can detect only syntactic clones [11].

The novel aspect of the work is using metric and

program dependence graph-based technique in the detection

process. To achieve this aim, the following objectives must

be fulfilled:

I. To detect code clones in more efficient way, a

novel approach is still needed.

II. Both syntactic and semantic clones should be

detected.

III. The tool should be light weighted.
IV. Many false positive clones are detected which

should be removed to get high precision value.

To fix those deficiencies, we suggest a hybrid approach

for detecting code clones. It combines program dependence

graph-based technique with metric-based technique.

The rest of the paper is organized as follows: Section 2

elaborates literature review. We provide an overall

summary of the proposed methodology in Section 3.
Section 4 gives the implementation and experimental result.

Section 5 refers to the conclusion and future work.

2. LITERATURE REVIEW

Clone detection is widely open research area from last

many years [12]. There are several techniques and tools are

mentioned in literature and broadly categorized into

following types:

2.1 Text-Based Code Clone Detection Techniques

In this method, line by line comparison has been made on

two code fragments by textual similarity exists between
them. These techniques do not require any filtration or

normalization process [13] and apply directly on the source

code. Johnson et al. [14] [15] enhances this process for

better maintenance and reengineering of legacy systems. He

found fingerprints for substring present in the source

program and used them for comparison purpose. NICAD

[16] is mainly a hybrid approach which uses tree concept

along with text-based technique to detect clones. This tool

works in two stages. Firstly flexible, pretty printing and

normalization process is used to identify potential clones

and then line by line textual comparison is made on these

potential clones to find actual clones. SDD [17] is another
text-based tool which is efficient to identify near-miss

clones in the large software system. SDD algorithm uses the

concept of n- neighbor approach for finding a number of

repetitions in the system. Ducasse et al. [18] use string-

based matching along with scattering plot diagrams to

visualized clones present in the system.

2.2 Token-Based Code Clone Detection Techniques

Token-based clone detection technique uses the concept of

parsing or lexical analysis to detect code clones. In this

technique, the normalization process is used to convert

source code into the intermediate stage which is the chain
of tokens. These tokens are generated with the help of any

parser and comparison algorithms are applied on them to

detect clones. Dup [19] is a combination of text-based and

token-based technique which divides a program in

parameterized and non-parameterized tokens to find the

Type I and the Type II clones. It uses hashing function to

find the Type I clone and position index for the type II

clones. CCFinder [20] is one of the efficient token based

tools which can detect code clones from Java, C, C++,

COBOL and many other source program files. This tool

convert source file into series of tokens and then a

comparison of these tokens are made with the help of suffix
tree algorithm. CP-Miner [21] uses least common

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

35

subsequence approach to detect clone activities in large

software systems.

2.3 Tree Based Code Clone Detection Techniques

Type III clones or near-miss clones are tree-based in which
code is modified [22]. In this source code is represented by

abstract syntax trees in contrast to tokens and then pattern

matching is applied to them to find similar sub trees which

are considered as code clones [23]. Ira D. Baxter et al. [24]

presents a tool CloneDr which generates abstract syntax

tree by using parser; then three comparison algorithms are

used to detect code clones. Jiang et al. [25] present a tool

named DECKARD introduced a novel approach of a

characteristic vector in Euclidian space to find similar sub

trees.

2.4 Graph Based Code Clone Detection Techniques

In this technique, program dependence graph is obtained

from source code as an intermediate state. To detect code

clones, isomorphic sub-graphs are identified [23].

Komondor et al. [26] proposed an Approach called PDG-

DUP that uses program dependence graphs (PDGs) and

program slicing to search non-contiguous and intertwined

clones that involve variable renaming and statement

reordering. Krinke [27] presented an approach for

classifying similar code fragments in programs based on

searching identical sub-graphs in attributed directed graphs
called ‘Duplix’. Liu et al. [28] proposed a tool called GPlag

which uses the PDG-based algorithm to analyze the graph

and to detect the clones. It uses an algorithm called

sequential pattern mining to discover copy/paste. It found

the clone with high precision and added the new feature like

text clone and text clone file ratio. Gabel et al. [29]

projected a scalable detection algorithm for finding

semantic clones. This algorithm is depended on selecting

PDG sub graph based on its related structured syntax.

2.5 Metrics Based Code Clone Detection Techniques

In metric based code clone detection technique, different

metrics of code are calculated, and code clones should

possess similar values of these metrics. Jean Mayrand et al.

[30] used this technique in the tool named ‘Datrix’ in which

21 metrics are calculated by four categories viz. name,

layout, expression and control flow of program [31].

Kontogiannis et al. [32] use metrics technique in two

different ways to detect code clones. In a first way, metrics

are calculated for whole program or function. It compares
data by data and control flow among methods. In a second

way, it uses to do statement by statement analysis of the

whole block by applying dynamic programming techniques.

2.6 Hybrid Code Clone Detection Techniques

There are certain hybrid tools which use the combination of

above discussed syntactic and semantic techniques to detect

clones. By utilizing benefits of various methods, it can

identify all types of clones with more efficiency and

accuracy. Koschke et al. [33] present a process which

overcomes the limitation of token-based techniques by
using Abstract Syntax tree with a combination of suffix tree

algorithms. Leitao [34] applies a combination of both

structural changes detection techniques and semantic

techniques on programs to detect clones.

3. PROPOSED METHODOLOGY

Code clones are considered as a huge threat to maintenance
and software efficiency. It is not feasible to track code

clones manually. Hence, various clone detection techniques

and tools are proposed, but there are certain limitations. So

clone detection is an open research area.

3.1 Proposed Approach

The proposed work presents an automated clone detection

tool for Java programs. This tool combines PDG based and

metrics based technique to detect code clone efficiently.

Our proposed tool focuses on the semantic information

carried in PDG and applies comparison operation on this to

find probable clones. After detection of a potential clone, it

is necessary to verify whether they are real clones or false

positives. To solve this purpose, various metrics are

calculated, and comparison of yield values has been made.

Hence, this tool goes through different phases during its

clone detection life cycle. Figure 3.1 shows the proposed
overall structure of our approach.

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

36

Figure 3.1: Overall architecture of our approach

3.2 Design

A. Preprocessing Phase

Jar files are kinds of Zipping files. Thus before extracting

features from class files, we need to decompress the Jar file

using the Java Class Foundation Library API, java.util.Jar

to finish this job. We use the JarResource to obtain the byte
codes of all classes in a Jar file. This is the first phase which

determines whether inputted files are in .class format or not.

As proposed system is only for Java programs and works on

Java byte code, therefore, input files should be Java file

with .class extension. Java .class file contains compiled

byte code of particular file, and it transforms the code into a

unified format by removing all syntactic dissimilarity that

exists in the program. Java byte code is a complied code

(low-level language code) of a program written by a

programmer in a high-level language. It is considered as an

intermediate representation of source code which makes

Java programs independent of any platform. The key
purpose of using java byte code is that API which we

utilized for the creation of PDG and calculation of metrics

works only on Java byte code. Moreover, it helps to find

semantic clones by removing syntactic dissimilarities.

B. Conversion Phase

In clone detection process, the comparison algorithms are

mostly applied for the intermediate stage except for text

based detection process. The extraction of the intermediate

stage from the source code is done in this phase. This

intermediate stage can be tokens, trees, and graphs based on
the clone detection technique applied. As program

dependence graph-based technique is used here to detect

code clone, so PDGs are obtained from source code during

this phase of the proposed system. To get PDG, Java

System Dependence Graph API is used which is the only

Java API available to perform this function. After

extraction of PDG, analysis on control dependence and data

dependence nodes are made and stored in the form of

adjacency matrices. If one node is data dependent on other

then this relation is represented by 1, control dependence is
represented by 2, and independent nodes are represented by

0.

C. Normalization Phase

Normalization phase is used to remove irrelevant

differences exist in code fragments like whitespaces,

comments, and layout. But program dependence graphs are

independent of these changes, so it is not required to

remove these differences from code fragments. However,
PDG is sensitive to addition, deletion or modification in any

statement and if such conditions do not contribute to any

data and control flow of program, then they should be

removed to reduce the number of comparisons and to detect

clones more accurately. Due to these reasons, there is a

need to further modify these extracted matrices and

obtained filtered matrices. Hence, we remove those nodes

which are control and data independent so that information

about only semantically similar nodes should retain in the

matrix which helps us to detect clones even when any data
or control independent statement is added or deleted.

D. Evaluation Phase

After normalization, filtered matrices are obtained and fed

into ‘Evaluation’ phase where it determines whether any

similarity holds between both code fragments or not. For

this purpose, a comparison algorithm compares the values

of both matrices to find the corresponding node to node

dependence between programs i.e. if one node is either

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

37

control, data or independent of other nodes in the first

matrix then corresponding node should contain same values

on other nodes in the second matrix. If this similarity exists

then, they are potential clones otherwise not. Hence,

comparison algorithm is used to check data and control

flow rather than any textual similarity. Therefore, if two
program exhibits similar control and data flow, then they

are considered to be potential clones.

E. Metrics Computation Phase

Now after getting code fragments as a potential clone, it is

necessary to verify whether they are real clones or not

which can be done by calculating metrics and then making

the comparison on yield values. For this purpose, proposed

tool calculates various control flow metrics and object-

oriented metrics at class and function level for Java
programs. To calculate object-oriented metrics, Java

reflection API is used whereas ‘control flow’ metrics are

considered with the help of program dependence graph

(PDG). In Table 3.1, we are showing the different metrics

used in our system.

Table 3.1: Metrics used in the system

Metric Type Acronym Description

Control Flow Metrics

Complexity McCabe cyclomatic complexity

C nodes Number of control nodes

D nodes Number of data nodes

Ed counts Number of edges

Class Metrics

Fanout Number of methods called

T count Total variables

pubV Number of public variables

Protected Number of protected variables

Private Number of private variables

Function Metrics

F name Function name

P type Type of parameter passed

R type Return type

n Parameter Total number of parameters

3.3 Implementation

The tool proposed here can detect all types of clone

efficiently. This tool can identify both Type I and Type II

clones. Moreover, they are again verified by comparing

obtained metrics. For Type III clones, insertion and deletion

made on the same statement that does not affect control and

data dependency exist between them can be simply

detectable. As the comparison is prepared by control and

data relation, that remain same in a modified version of the

same program. However, when any data or control
independent statement is added, then it is already removed

by filter function, so the system can detect Type III clones

efficiently.

Type III clone detection can be illustrated with the

help of the following example: Two Java .jar files

InputJar1.jar and InputJar2.jar are entered into the proposed

system. Here both files differ in the position of independent

control declaration. Addition and reordering of this

statement do not affect the flow of the program and

consider as type III clone.
Now PDG of both files should be obtained with

the help of function used to generate them. After obtaining

PDG, an adjacency matrix is obtained which represents data

dependency with 1, control dependence with 2 and

independent nodes with 0.

Jar files are kinds of Zipping files. Thus before

extracting features from class files, we need to decompress

the Jar file using the Java Class Foundation Library API,

java.util.Jar to finish this job. We use the JarResource class

to obtain the byte codes of all classes in a Jar file.

The first function which is used after creation of

program dependence graph is filter function which removes
all the data and control independent statements which do

not affect the flow of the program. In this task, if the value

of both row and column corresponding to a particular node

is zero then this node is considering as an independent node

and should be removed from the matrix as it does not affect

the control and data flow of the program. Compare function

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

38

is used to detect potential clones. In this node to node

comparison is made as for clones programs similar

dependency should exist between programs. This function

takes filtered adjacency matrix of both files and finds

whether clone relation may exist between them or not.

Clone ratio can be defined as a percentage of
nodes matched. If all the nodes of code fragments are not

matched then it tells how much percent of total code is

considered as code clones. After finding potential clones,

next step is to prove them real clones. Hence, various

metrics for these potential clones are calculated with the

help of Count_Metric algorithm. After collecting metrics of

both files, their values are compared with the help of in

built comparison function using Java Array class. If all the

metrics values are equal then, they are actual clones

otherwise not.

4. IMPLEMENTATION AND EXPERIMENTAL
RESULT

To estimate the performance and efficiency of our

approach, we have performed an experiment. The purpose

of this experimentation was to compare the usefulness,

understandability, and performance of this way.

4.1 Experimental Method

The working of proposed tool starts with Adaption Phase

i.e. by giving two Java jar files as input with the help of the

user. For this purpose startup page of the tool is created by

using Java frames. To choose files with the help of the user,

Java FileChooser function is added which allow selecting

only .jar files. The input file is selected with the help of File

buttons. File1 and File2 Button handle the fileChooser

event and display the absolute path of java .jar file on java
text box. When File 1 or File 2 button is clicked by the user,

then open dialogue box is appeared to choose Java .jar files

to find clones in the system.

After uploading two .jar files, we get the results of

desired clones. Various object-oriented metrics and control

metrics are calculated to prove them as actual clones. Hence

in this way, all the phases of proposed tool are followed

step by step. We prepared two sets of classes - two open

source code Java projects such as Eclipse-ant and Eclipse-

JDT core.

1) Apply our clone detection program and other clone
detection programs to these two sets.

2) Show the results.

3) Randomly choose a couple of classes from Eclipse-ant

and change names and syntax a little.

4) Copied these updated classes on the files in Eclipse-JDT

core.

5) Apply our clone detection program and other clone

detection programs to these two sets.

6) Show the results.

Table 3.2 shows the details of the scenarios.

Table 3.2: Description of test cases

Test Cases Result

Original and target JAR files

are the same

1st part of Figure 3.2 shows that the Certainty percent = 100

Number of similar function =1120

Number of functions in 1st JAR = 1120

Number of functions in 2nd JAR = 1120

Two different JAR files

2nd part of Figure 3.2 shows that the Certainty percent = 23.07

Number of similar function=3
Number of functions in 1st JAR = 1120

Number of functions in 2nd JAR = 13

Two identical JAR files, each one containing only

one .class. In the second file, we modify the

following in one method only

 Method name

 Return data type

 Input parameter data type

3rd part of Figure 3.2 shows that Certainty percent = 33.33

Number of similar function=1

Number of functions in 1st JAR = 3

Number of functions in 2nd JAR = 3

Figure 3.2 shows the result of three test cases we have examined.

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

39

Figure 3.2: Three test case scenarios

4.2 Experimental Result

It is pretty difficult to make an accurate clone set because of

the ambiguity of clones. Though there are several

benchmarks on clone detectors. Bellon and his colleagues

found exact set checking manually [35]. They experimented

on eight open source projects with six clone detectors to

prove them whether there are actual clones or not. For a

huge number of collected clones, they arbitrarily choose

few of them.

Roy et al. compared clone detectors with four
distinct scenarios [35]. The main thought of their study is

using mutation by which technique mutants are generated

and injected and evaluates detectors with them.
Ducasse et al. used string matching on some

different languages including COBOL, Java, or C++, etc. to

find high precision and recall values [35].

We followed the Bellons’ benchmark. We took

four open source Java projects to evaluate the result for our

tool. It presents the numbers of ‘actual’, ‘detected’ and

‘correctly detected’ clones for different categories of clone

types by our proposed tool.

a. False Negatives and False Positive

False negative in % = │N│/│A│ * 100

False positive in % = │P│/│D│ * 100

Where,

False Negative [N] = Actual clones [A] – correctly

detected clones[C] which report the number of
clones failed to be detected.

False Positive [P] = Detected Clones [D] –

correctly detected clones[C] which report the

number of clones wrongly detected as clones.

Actual clones [A] are the reference clones.

Table 4.2 shows the false negative and false positive

determined by the clones for the projects.

Table 4.2: Calculated false negative and false positive

Projects
Actual

Clones
[A]

Detected
Clones [D]

Correctly

Detected
Clones [C]

False
Negatives [N]

False
Negatives in %

False
Positives [P]

False Positives in
%

Apache-httpd-
2.2.8

20 20 19 1 5 0 0

Eclipse-ant 15 15 14 1 6 0 0

Eclipse-jdtcore 16 16 16 0 0 0 0

J2sdk-swing 21 21 21 0 0 0 0

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

40

b. Precision and Recall

The quality of the system can be estimated through the
quality metrics. The quality metrics considered in the

proposed methodology are:

 Precision

 Recall

1. Precision: Precision measures the proportion of

actual clones which are correctly identified [24].

Precision = Number of clones correctly found / Total

number of clones

2. Recall: Recall measures the proportion of non-

clones which are correctly identified [24].

Recall = Number of clones found correct / Total number of

clones in the source code

High precision shows that there are mostly appropriately

recognized code clones and low precision indicates that all

the code clones are not true. On the other hand, high recall

demonstrates that most of the code clones in the source

code have been identified; low recall indicates that most of

the code clones in the source code have not been located.

While comparing code clone detection techniques,

precision and recall values are judged for accuracy.

From the data presented that has been given in

Tables 4.3 and 4.4, it could be seen that our proposed tool

has resulted in higher values for precision and recall for all

the clone types. As precision and recall are the best
parameters for the evaluation of clone detection tools, it

could be concluded that the proposed tool is found to be

efficient for identifying all kinds of clones.

Table 4.3: Calculated Precision and Recall value for type I type II clone

Projects
Actual

Clones
[A]

Detected
Clones [D]

Correctly

Detected
Clones [C]

Precision in
%

Recall in
%

Actual

Clones
[A]

Detected

Clones
[D]

Correctly

Detected
Clones [C]

Precision in
%

Recall in
%

Apache-

httpd-

2.2.8

203 192 183 95 90 252 249 242 97 96

Eclipse-
ant

382 374 363 97 95 379 422 372 88 98

Eclipse-
jdtcore

1603 1585 1427 90 89 6057 5686 5573 98 92

J2sdk-
swing

8820 8196 8115 99 92 8728 8918 8205 92 94

This tool can identify both the Type I and the Type II

clones efficiently. For Type III clones, insertion and

deletion made on the same statement that does not affect

control and data dependency exist between statements. As a

comparison is finished by control and data relation, that

remain same in a modified version of the same program.

However, when any data or control independent statement

is added, then it is already removed by filter function, so the

system can detect Type III clones efficiently.

Table 4.4: Calculated Precision and Recall value for type III and type IV clone

Projects

Type III Type IV

Actual

Clones

[A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision in

%

Recall

in %

Actual

Clones

[A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision in

%

Recall

in %

Apache-

httpd-
2.2.8

807 756 711 94 88 11 11 10 90 90

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

41

Eclipse-
ant

448 426 426 100 95 10 10 10 100 100

Eclipse-

jdtcore
4864 4378 4378 100 90 17 17 15 88 88

J2sdk-
swing

12052 12737 11209 88 93 31 32 30 92 95

From the data presented that has been given in Tables 4.3

and 4.4, it could be seen that our tool has resulted in higher

values for precision and recall for all the clone types. As

precision and recall are the best parameters for the

evaluation of clone detection tools, it could be concluded

that the proposed tool is found to be an efficient tool for

identifying all kinds of clones.

4.3 Comparison with Existing Tools

In this section, we compared our tool with CloneDR using
the same example sets. CloneDR is an existing Java clone

detection tool which identifies both exact and near-miss

clones in software systems. It can find clones with the

different format, variable names, and code snipers.

Table 4.5: Calculated false negative and false positive (CloneDR)

Projects
Actual

Clones [A]
Detected

Clones [D]

Correctly

Detected

Clones [C]

False
Negatives [N]

False
Negatives in %

False
Positives [P]

False Positives
in %

Apache-httpd-2.2.8 20 20 18 2 6 0 0

Eclipse-ant 15 15 12 3 7 0 0

Eclipse-jdtcore 16 16 16 0 0 0 0

J2sdk-swing 21 21 21 0 0 0 0

Table 4.6: Calculated Precision and Recall value for type I and type II clone (CloneDR)

Projects

Type I Type II

Actual

Clones

[A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision in

%

Recall

in %

Actual

Clones

[A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision in

%

Recall

in %

Apache-

httpd-
2.2.8

203 191 181 90 88 252 249 242 97 96

Eclipse-

ant
382 374 363 97 95 379 422 372 88 98

Eclipse-
jdtcore

1603 1585 1427 90 89 6057 5680 5571 90 90

J2sdk-
swing

8820 8195 8110 92 90 8728 8915 8200 89 88

Table 4.7: Calculated Precision and Recall value for type III and type IV clone (CloneDR)

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

42

Projects

Type III Type IV

Actual

Clones
[A]

Detected

Clones [D]

Correctly

Detected
Clones [C]

Precision in

%

Recall

in %

Actual

Clones
[A]

Detected

Clones [D]

Correctly

Detected
Clones [C]

Precision in

%

Recall

in %

Apache-

httpd-

2.2.8

807 756 711 94 88 11 11 10 90 90

Eclipse-
ant

448 426 426 100 95 10 10 10 100 100

Eclipse-

jdtcore
4864 4377 4377 100 90 17 17 14 87 87

J2sdk-
swing

12052 12737 11208 87 92 31 33 30 92 94

4.4 Analysis of the Result

From the above tables, we can compare our model with the

existing CloneDR tool in respect to False Negative, False

Positive, Precision, and Recall. Here we are observing that
False Positive value of our model is low compared to

CloneDR. False Positive reports the number of clones

wrongly detected as clones. So we have a better result.

Again, the Recall value of our model is high compared to

CloneDR. High recall admits that most of the source code

clones have been found. It means the performance of our

model is more accurate compared to CloneDR.

4.5 Threads of Validity

A. Internal Validity: Threat of internal validity is about the

capacity of our experiments to relate the dependent and
independent variables. The threat may be exposed through

investigational or individual errors. We did a manual

analysis to validate the accurateness of the clone detection.

The manual evaluation can have human errors. Again, there

is a lot of metric parameters from which we used few of

them. More metric value comparison may change the result.

B. External Validity: Threats to external validity correspond

to the way of generalizing our results. We had done our

comparison with other existing tools in respect to precision

and recall. However, this does not declare that the same

result would be found for other programming languages.

C. Construct Validity: Construct validity threats are related

to the relation between theory and observation. It

corresponds to the suitableness of our evaluation

parameters. We mainly focused on the precision, recall, and

run-time for the evaluation of our tool. These evaluation

parameters measured high precision & recall values and
low in run-time values.

5. CONCLUSION AND FUTURE WORK

Dependence Graph API where data dependency among

nodes represented by 1, control dependency by 2 and

independent nodes by 0. These adjacency matrices are

filtered to remove independent nodes. Node by node

comparison is made to prove them potential clones. Various

object-oriented metrics at the class level and function level

are computed using reflection API. Various control metrics

are calculated with the help of obtained PDG. The proposed

tool compares these metrics values to find whether potential
clones are actual clones or not.

This approach is implemented only for Java

programs. In future it can be adapted for other languages

like C++, C#, etc. so that it becomes language independent.

More metrics can be calculated with it to get more

understandable results. The efficiency of the tool can be

improved for type IV clone where reordering of control and

data dependent statement is associated. Calculated metrics

can also be used to rank code clones for efficient clone

management. This tool can be further enhanced by using

clone removal techniques after detecting actual clones.

The proposed tool is a hybrid approach tool which

combines program dependence graph-based clone detection

technique with metrics-based technique. Program

dependence graph technique is used to find potential clones

in the system while the metrics-based technique is used to

verify them as actual clones. As PDG carries semantic

information of system, hence proposed tool can detect both

syntactic as well as semantic similar code clones. The

proposed tool finds code clones only for programs written

in Java language. This tool goes through five phases during

its clone detection life cycle. Java byte code is given as

input to the system as it removes all structural

dissimilarities that exist in the system and converts code

fragments into unified code format. PDG is obtained with

the help of Java System Dependence Graph API which is

displayed in java frame with the help of Java Swings. The

adjacency matrix is achieved with the help of Java System

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

43

[1] K. H. Bennett, and V.T Rajlich, “Software Maintenance and Evolution:

a Roadmap,” in ICSE '00 Proceedings of the Conference on The Future of

Software Engineering Pages 73-87.

[2] Shahid Hussain, Muhammad Zubair Asghar, Bashir Ahmad and

Shakeel Ahmad, “A Step towards Software Corrective Maintenance: Using

RCM model,” (IJCSIS) International Journal of Computer Science and

Information Security, Vol. 4, No. 1 & 2, 2009.

[3] Mrs. E.Kodhai, V.Vijayakumar, G. Balabaskaran, T.Stalin, and

B.Kanagaraj, “Method Level Detection and Removal of Code Clones in C

and Java Programs using Refactoring,” International Journal of Computer

Communication and Information System (IJCCIS) – Vol2. No1. ISSN:

0976–1349 July – Dec 2010.

[4] Robert L. Glass, “Frequently Forgotten Fundamental Facts about

Software Engineering,” an article in IEEE Software May/June 2001.

[5] Deepak Sethi, Manisha Sehrawat, and Bharat Bhushan Naib,

“Detection of code clones using Datasets,” International Journal of

Advanced Research in Computer Science and Software Engineering,

Volume 2, Issue 7, July 2012.

[6] C.K. Roy, and J.R. Cordy, “A Survey on Software Clone Detection

Research,” Queen’s School of Computing Tech. Report 2007-541,

Kingston, 2007, 115 pp.

[7] C.J. Kapser, and M.W. Godfrey, ““Cloning Considered Harmful”

Considered Harmful: Patterns of Cloning in Software,” Emp. Soft. Eng.,

13(6), 2008, pp. 645-692.

[8] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A Tool for

Finding Copy-Paste and Related Bugs in Operating System Code,” in

OSDI, San Francisco, 2004, pp. 289–302.

[9] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone Smells in Software

Evolution,” in ICSM, Paris, 2007, pp. 24–33.

[10] D. Gayathri Devi, and Dr.M.Punithavalli, “Developing a Novel and

Effective Clone Detection Using Data Mining Technique,” International

Journal of Advanced Research in Computer Science and Software

Engineering, Volume 2, Issue 8, August 2012.

[11] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and

Shinji Kusumoto, “Gapped Code Clone Detection with Lightweight

Source Code Analysis,” ICPC 2013, San Francisco, CA, USA, 978-1-

4673-3091-6/13/$31.00 c 2013 IEEE.

[12] C. K. Roy, M. F. Zibran, R. Koschke, “The Vision of Software Clone

Management: Past, Present, and Future (Keynote Paper),” in IEEE

Conference on Software Maintenance, Reengineering and Reverse

Engineering (CSMR- WCRE), Software Evolution Week, 2014, pp.18-33.

[13] C. K. Roy, James R. Cordy, and Rainer Koschke, “Comparison and

evaluation of code clone detection techniques and tools: A qualitative

approach,” in Science of Computer Programming, May 2009, pp. 470-495.

[14] J. Johnson, “Identifying redundancy in source code using

fingerprints,” in: Proceedings of Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON), 1993, pp. 171-183.

[15] J. Johnson, “Visualizing textual redundancy in legacy source,” in:

Proceedings of Conference of the Centre for Advanced Studies on

Collaborative research, (CASCON), 1994, pp. 171-183.

[16] C. Roy and J. Cordy, “NICAD: Accurate detection of near-miss

intentional clones using flexible pretty-printing and code normalization,”

In 16th IEEE International Conference on Program Comprehension, 2008,

pp. 172–181.

[17] Seunghak Lee and Jeong Iryoung, “SDD: high-performance code

clone detection system for large scale source code,” In Companion to the

20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, ACM, 2005, pp. 140-141.

[18] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent

Approach for Detecting Duplicated Code,” in Proceedings of the 15th

International Conference on Software Maintenance (ICSM’99), September

1999, pp. 109–118.

[19] Baker, Brenda S, “On finding duplication and near-duplication in

large software systems,” In Proceedings of 2nd Working Conference on

Reverse Engineering, IEEE, 1995, pp. 86-95.

[20] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: A multi-linguistic

token- based code clone detection system for large scale source code,” in

IEEE Transactions on Software Engineering, 2002, pp. 654-670.

[21] Zhenmin Li, Shan Lu, Suvda Myagmar and Yuanyuan Zhou, “CP-

Miner: A Tool for Finding Copy-paste and Related Bugs in Operating

System Code,” Software Engineering, IEEE Transactions, vol. 32, March

2006, pp. 176-192.

[22] D. Rattan, Rajesh Bhatia, and Maninder Singh, “Software clone

detection: A systematic review,” Information and Software Technology,

vol. 55, no. 7, 2013, pp 1165-1199.

[23] Jiang, Zhen Ming, and Ahmed E. Hassan, “A framework for studying

clones in large software systems,” In Seventh IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM), 2007,

pp. 203-212.

[24] I. D. Baxter, A. Yahin, L. Moura, M. SantAnna, L. Bier, “ Clone

Detection using abstract syntax trees,” in Proceedings of the 14th

International Conference on Software Maintenance (ICSM ‟98), Bethesda,
Maryland, USA, 1998, pp. 368-378.

[25] Jiang, Lingxiao, Ghassan Misherghi, Zhendong Su, and Stephane

Glondu. “Deckard: Scalable and accurate tree-based detection of code

clones,” In Proceedings of the 29th International conference on Software

Engineering, Minneapolis, MN, USA, 2007, pp. 96-105.

[26] R. Komondoor, S. Horwitz, “Using slicing to identify duplication in

the source code,” in Proceedings of the 8th International Symposium on

Static Analysis (SAS' 01), Vol. LNCS 2126, Paris, France, 2001, pp. 40-

56.

[27] J. Krinke,“Identifying Similar code with program dependence

graphs,” In Proceedings of the 8th Working Conference on Reverse

Engineering (WCRE'01), Stuttgart, Germany, 2001, pp. 301-309.

[28] C. Liu, C. Chen, J. Han, P. S. Yu, “GPLAG: Detection of Software

Plagiarism by Program Dependence Graph Analysis,” In Conference on

Knowledge Discovery and Data Mining, 2006, pp. 872-881.

[29] Gabel, Mark, Lingxiao Jiang, and Zhendong Su, “Scalable detection

of semantic clones,” In 30th International Conference on Software

Engineering, (ICSE'08), ACM/IEEE, 2008, pp. 321-330.

[30] Johnson, J. Howard, “Identifying redundancy in source code using

fingerprints,” In Proceedings of the conference of the Centre for Advanced

Studies on Collaborative research: software engineering- IBM Press, vol.

1, 1993, pp. 171-183.

[31] J. Mayrand, Claude Leblanc, and Ettore M. Merlo, “Experiment on

the automatic detection of function clones in a software system using

metrics,” In Proceedings of International Conference on Software

Maintenance, IEEE, 1996, pp. 244-253.

[32] A. Kostas Kontogiannis, Renator DeMori, Ettore Merlo, M. Galler,

and Morris Bernstein, “Pattern matching for clone and concept detection,”

In Reverse engineering, Springer US, 1996, pp. 77-108.

[33] R. Koschke, Raimar Falke, and Pierre Frenzel, “Clone Detection

using abstract syntax suffix trees,” In 13th Working Conference on

Reverse Engineering (WCRE'06), IEEE, 2006, pp. 253-262.

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

44

REFERENCES

[34] Leitao Antonio Menezes, “Detection of redundant code using R 2 D

2,” Software quality journal, vol. 12, no. 4, 2004, pp. 361-382.

[35] G. Anil Kumar, Dr. C.R.K.Reddy, Dr. A. Govardhan, “AN

EFFICIENT METHOD-LEVEL CODE CLONE DETECTION SCHEME

THROUGH TEXTUAL ANALYSIS USING METRICS,”

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING &

TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 –

6375(Online) Volume 3, Issue 1, January- June (2012), pp. 273-288.

Authors' Profile

Young Lee received the PhD degree in Computer Science

and Software Engineering from Auburn University in 2007.

He is an Associate Professor in the Department of Electrical

Engineering and Computer Science, Texas A&M

University-Kingsville. His research interests include

Software Visualization, Reverse Engineering, Computer

Science Education, and STEM Education.

Aritra Ghosh received the M.S. degree in Computer
Science from Texas A&M University-Kingsville in 2015.
He is currently pursuing PhD in Computer Science, Florida
Atlantic University. His research interests include Source
Code Visualization, Tracking Software Evolution, Data
Mining and Machine Learning, Language for Mobile
Sensor Application, Human in loop in Self-Adaptive
System.

GSTF Journal on Computing (JoC) Vol.5 No.2, January 2017

© The Author(s) 2017. This article is published with open access by the GSTF

45

