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ABSTRACT
The growing need to address privacy concerns when 
social network data is released for mining purposes has 
recently led to considerable interest in various 
techniques for graph anonymization. These techniques 
and definitions, although robust are sometimes difficult 
to achieve for large social net-works. In this paper, we 
look at applying ant colony opti-mization (ACO) to two 
known versions of social network anonymization, 
namely k-label sequence anonymity, known to be NP-
hard for k ≥ 3. We also apply it to the more recent work 
of [23] and Label Bag Anonymization. Ants of the ar-
tificial colony are able to generate successively shorter 
tours by using information accumulated in the form of 
pheromone trails deposited by the edge colonies ant. 
Computer simu-lations have indicated that ACO are 
capable of generating good solutions for known harder 
graph problems.

The contributions of this paper are two fold: we 
look to apply ACO to k-label sequence anonymity and 
k=label bag based anonymization, and attempt to show 
the power of ap-plying ACO techniques to social 
network privacy attempts. Furthermore, we look to 
build a new novel foundation of study, that although 
at its preliminary stages, can lead it ground breaking 
results down the road.

I. INTRODUCTION

The recent explosion of activity on the internet has 
given rise to huge amounts of social network data 
which is usefully viewed as a collection of entities 
and associations between them. One such example 
is the PatientsLikeMe social net-work. Here, 
members get the chance to connect with others 
dealing with similar health issues. This information 
could be vital in the study for disease research. 
However, can we ensure sensitive information, when 
studied, will still protect the members associated with 
it?

While significant amounts of useful information may be 
extracted from this kind of network data, there are many 
pri-vacy concerns that need to be addressed before the 
data is released. Particularly, the data may contain 
sensitive infor-mation about individuals that cannot be 
disclosed without compromising their privacy. 
Examples include Facebook, Twitter, LinkedIn, and 
many other online social networks that have become 
the social lifeline of many individuals. An-other 
example is the sensitive patient data of pharmaceuti-cals 
purchased by a customer of an on-line pharmacy. It has 
already been shown that naive attempts to hide this 
sensi-tive information do not work [15, 16]. They 
showed attacks that could check for the existence of 
edges between targeted nodes in the anonymized 
version of the network. These re-sults demonstrate the 
need for a rigorous approach to graph anonymization.

Liu and Terzi proposed a simple graph anonymization 
tech-nique in order to prevent identity attacks [24]. They 
assume that the adversary has prior knowledge of degrees of 
certain vertices in the network, and may use this basic 
structural in-formation to try and identify certain targeted 
nodes in the anonymized network. To fight such attacks, 
they defined the concept of k-degree anonymity, for a input 
parameter k. A graph G is said to be k-degree anonymous if 
it is the case that for every vertex v of G, there are at least k 
− 1 other vertices in G with the same degree as v. They 
study the problem of converting a given graph into a k-
degree anony-mous graph with the minimum number of 
edge additions.

This work led to a basis of study for graph 
anonymization that led to a broad net of work. 
Within this net were two very popular and powerful 
graph anonymization techniques, namely k-label 
sequence anonymity and k-label bag based 
anonymity, where k is the size of the anonymous 
groups in terms on nodes. Clearly we see that 
increasing the size of k will in fact increase the level of 
privacy of a given node. The issue that follows is that 
the larger the size of k for a given network graph, 
the harder the procedure to anonymize the graph 
becomes.
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A. Our Problem
In this paper, we study two natural generalizations of k-

degree anonymity. Firstly, the graph representing a social
network can have labelled edges. As the need to represent
social networks as graphs grows, so will the amount of in-
formation that needs to be stored in these graphs. The label
often gives auxiliary information associated with a relation-
ship. In a purchasing example, an edge may represent the
fact that a shopper has bought a certain product. Associ-
ated with such a relationship could be data such as dates
of purchase, quantities, ratings, etc. In order for our graph
model to support this way of associating auxiliary data with
relationships, we will considered graphs whose edges are la-
belled by elements of some label set. For such graph, the
degree of a vertex is replaced by its label sequence contain-
ing all the labels of the edges incident on it.

These considerations lead to the problem of k-label se-
quence anonymity in which we are given an edge labelled
graph and we would like to ensure that a given subset of
vertices of G is k-label sequence anonymous by adding a
minimum number of edges. We will also study this problem
for bipartite graphs, where the vertices to be anonymized are
from one side of the bipartition. The bipartite model is use-
ful in cases where vertices represent two types of entities,
and edges exist only between entities of different types.

This problem was studied in depth in [6]. We look to build
off this work by introducing the procedures of Ant Colony
Optimization (ACO) to the main problem defined in [6].

Secondly, we apply similar ACO techniques to the algo-
rithm shown in [23] dealing with Label Bag based anony-
mization. We try and show that our results using ACO are
slightly better than the results given in the original paper,
thus showing the power ACO can have on anonymization
problems in general, and building a solid framework for fur-
ther study.

B. Ant Colony Optimization
Ant colony optimization (ACO) is a population-based meta-

heuristic that can be used to find approximate solutions to
difficult optimization problems.

In ACO, a set of software agents called artificial ants search
for good solutions to a given optimization problem. To ap-
ply ACO, the optimization problem is transformed into the
problem of finding the best path on a weighted graph. The
artificial ants (hereafter ants) incrementally build solutions
by moving on the graph. The solution construction process
is stochastic and is biased by a pheromone model, that is, a
set of parameters associated with graph components (either
nodes or edges) whose values are modified at runtime by the
ants.

The easiest way to understand how ant colony optimiza-
tion works is by means of an example. We consider its appli-
cation to the travelling salesman problem (TSP). In the TSP
a set of locations (e.g. cities) and the distances between them
are given. The problem consists of finding a closed tour of
minimal length that visits each city once and only once.

To apply ACO to the TSP, we consider the graph defined
by associating the set of cities with the set of vertices of the
graph. This graph is called construction graph. Since in the
TSP it is possible to move from any given city to any other
city, the construction graph is fully connected and the num-
ber of vertices is equal to the number of cities. We set the
lengths of the edges between the vertices to be proportional

to the distances between the cities represented by these ver-
tices and we associate pheromone values and heuristic val-
ues with the edges of the graph. Pheromone values are mod-
ified at runtime and represent the cumulated experience of
the ant colony, while heuristic values are problem dependent
values that, in the case of the TSP, are set to be the inverse
of the lengths of the edges.

The ants construct the solutions as follows. Each ant starts
from a randomly selected city (vertex of the construction
graph). Then, at each construction step it moves along the
edges of the graph. Each ant keeps a memory of its path,
and in subsequent steps it chooses among the edges that do
not lead to vertices that it has already visited. An ant has
constructed a solution once it has visited all the vertices of
the graph. At each construction step, an ant probabilisti-
cally chooses the edge to follow among those that lead to
yet unvisited vertices. The probabilistic rule is biased by
pheromone values and heuristic information: the higher the
pheromone and the heuristic value associated to an edge, the
higher the probability an ant will choose that particular edge.
Once all the ants have completed their tour, the pheromone
on the edges is updated. Each of the pheromone values is
initially decreased by a certain percentage. Each edge then
receives an amount of additional pheromone proportional to
the quality of the solutions to which it belongs (there is one
solution per ant).

This procedure is repeatedly applied until a termination
criterion is satisfied.

C. Related Work
In recent years, many interesting definitions for graph anon-

ymization have been proposed and studied. Each of them
starts by modelling the background information that an ad-
versary will use to attack the data. Once that is done, a no-
tion of anonymity is defined and studied.

Liu and Terzi proposed a simple graph anonymization tech-
nique to prevent identity disclosure attacks [24]. They as-
sume that the adversary has prior knowledge of degrees of
certain vertices in the network, and may use this information
to try and identify certain nodes in the network. To fight such
attacks, they defined the concept of k-degree anonymity. For
an input parameter k, a graphG is said to be k-degree anony-
mous if for every vertex v inG, there are at least k−1 other
vertices in G with equal degree as v.

Hay et al. [16] model the information available to the ad-
versary using two types of queries–vertex refinement queries
and subgraph knowledge queries–and study the vulnerabil-
ity of various datasets under such an attack. They propose
an anonymization technique based on random perturbations
against such adversaries.

Zheleva and Getoor [37] study the problem of protect-
ing certain sensitive edges in an edge-labeled graph under
link re-identification attacks. They propose anonymization
techniques using edge-removal and node-merging to prevent
such attacks.

Zhou and Pei [14] focus on neighbourhood attacks, which
was expanded by Tripathy and Panda [35]. In their model,
an adversary uses information about a node’s neighbours to
target them. To prevent such attacks, they define a notion
of k-anonymity on graphs so that nodes in an anonymized
group will have isomorphic neighbourhoods. They show
that anonymizing a graph under their definition using a min-
imal number of edge additions is NP-hard and they develop
a method that well works in practice.
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Thompson and Yao [34] study i-hop degree-based attacks.
In their model an adversary’s prior knowledge includes the
degree of the target and the degree of its neighbours within
i hops. They develop a inter-cluster matching method for
anonymizing graphs against 1-hop attacks through edge ad-
dition and deletion. Thomson and Yao use bipartite graphs,
namely the Netflix Prize Data, to help motivate their work.

Wu et al. [36] recently proposed the k-symmetry model.
They state for any vertex v in the network, there exists at
least k− 1 structurally equivalent counterparts. The authors
also proposed sampling methods to extract approximate ver-
sions of the original network from the anonymized network
so that statistical properties of the original network could be
evaluated. Cormode et al [9] consider a new family of anon-
ymizations, for bipartite graph data, called (k, l)-groupings.
These groupings were used to preserve the underlying graph
structure perfectly, and instead anonymize the mapping from
entities to nodes of the graph. They created "‘safe"’ group-
ings that were able to withstand a set of known attacks.

More recently, Salas in [30, 29] studied conditions to ap-
proximate a given graph by a regular one. Obtaining optimal
conditions for a few metrics such as the edge rotation dis-
tance for graphs, the rectilinear and the Euclidean distance
over degree sequences. Then, requiring the approximation to
have at least k copies of each value in the degree sequence,
this is a property proceeding from data privacy that is called
k-degree anonymity.

Motivated by a strongly growing interest in graph anony-
mization as recently as 2016, [20] studied the NP-hard De-
gree Anonymity problem asking whether a graph can be
made k-anonymous by adding at most a given number of
edges. Herein, a graph is k-anonymous if for every vertex
in the graph there are at least k1 other vertices of the same
degree.

Finally, motivated strongly by our work in [6], we see
clearly the strong urge to work in k-anonymization in [5,
25], more specifically in k-degree anonymization. Degree
anonymization by vertex addition is computationally intractable
in general. Posing structural restrictions on the edges con-
nected to the new vertices seems to make the problem even
harder. There are some tractable special cases, for example,
when the number of new edges is small, which is where our
work leads.

D. Our Results
We introduce a new procedure for finding an anonymous

graph in k-anonymity scenarios for labelled graphs. We con-
sider k-anonymization with respect to the collection of la-
bels of incident edges, in two forms. Namely the k-label
sequence anonymity proposed in [6] and the k-Label Bag
Sequence anonymity proposed in [23]. In §II we lay out
all the background information needed to comprehend Ant
Colony Optimization, k-label sequence anonymity, and k-
label bag based anonymity.

In §III we deal with implementing ACO techniques on k-
label bag based anonymization. Here we see the power that
ACO can have on a well laid out procedure.

In §IV we consider k-label sequence anonymization. For
k = 3, we present a polynomial time procedure, based on
recent work in [6].

In §V we present some interesting future work that and
proposed problems that will further the scope of this paper
down the road.

II. PRELIMINARIES

In this section, we define the concept of k-anonymity for
tables, unlabelled graphs and labelled graphs to help show
the progression of the definitions. We also introduce the def-
initions of Label Bag based Anonymity and give some basic
background of Ant Colony Optimization.

A. Tables and k-Anonymity
Table Anonymization has been extensively studied [2, 4,

13, 19, 26]. Suppose we want to publish a table of data con-
taining potentially sensitive information. To help protect the
data, we have the ability to suppress the data entries in the
table with *’s. To achieve k-anonymization by suppressing
the entries, we require that after suppression, for any given
row in the table, there are k − 1 other rows that look identi-
cal.

Table 1: Table Data before Anonymization
Fname LName Age Grad Year
Harry Potter 30 2012
John Connor 45 2013
Harry Houdini 30 2010
Sarah Connor 32 2013

If we want to 2-anonymize the above data, then using the
fewest suppressions to acheive 2-anonymity would be:

Table 2: 2-Anonymous Table
Fname LName Age Grad Year
Harry * 30 *

* Connor * 2013
Harry * 30 *

* Connor * 2013

DEFINITION 1. A table consisting of a multiset V of rows,
that is sequences of length m over a set Σ of entry val-
ues. Let t : V −→ (Σ

⋃
{∗})m. If for all v ∈ V and

j = 1, . . . ,m it is the case that t(v)j ∈ {vj , ∗}, we call
t a suppressor. The table t(V ) resulting from a suppres-
sor t is defined to be k-anonymous iff for all v ∈ V there
exist at least k − 1 distinct rows v1, . . . , vk−1 such that
t(v) = t(v1) = . . . = t(vk−1). In other words, after apply-
ing t, each row is identical to at least k − 1 other rows.

B. Anonymizing entries is hard
In [26], the problem of finding the minimum number of

suppressions to anonymize a table was proven NP -hard for
k ≥ 3 and |Σ| ≥ n From this, [2] lowered the alphabet size
to |Σ| = 3. Finally, it was shown in [4] that the problem
remains hard for |Σ| = 2 and k ≥ 3.

C. Unlabeled Graphs and k-Anonymity
Let G = (V,E) be a simple graph where V , |V | = n,

denotes the set of vertices and E denoted the set of edges.
We denote the degree of a vertex v by d(v).

DEFINITION 2 (DEGREE SEQUENCE). Let
X = {x1, x2, . . . , xn}, X ⊆ V , be a subset of vertices
of G. The degree sequence of X is (d1, d2, . . . , dn) where
di = d(xi) is the degree of the vertex xi.
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DEFINITION 3 (k-ANONYMITY). A sequence of val-
ues S = (s1, s2, . . . , sn) is said to be k-anonymous if every
distinct value in S occurs at at least k times. A subset of ver-
tices X in a graph G is k-anonymous if its degree sequence
is k-anonymous.

Degree-Based subset Anonymization Problem (D-SAP):
Given a graph G = (V,E), X ⊆ V and an integer k, find a
graph G′ = (V,E ∪E′) such that X is k-anonymous in G′

and the number of new edges added, |E′|, is minimized.

Note: We state our anonymization problems in the optimiza-
tion version of [2, 4, 26], and indeed the algorithms we give
are naturally viewed in this way. On the other hand, for
hardness we in fact deal with the decision version of these
problems. That is, we have another input t ∈ N, and we
ask whether there is a set E′ of edges such that G′ is k-
anonymous and |E′| ≤ t.

Example 1 : Here we present a small example of D-SAP.
Consider the graph G in Figure 1. Suppose we want 2-
anonymity for the subset of vertices {v1, v2, v5, v6}, which
has degree sequence (2, 4, 2, 2). Adding the dotted edges of
Figure 1(b) will result in the degree sequence (2, 4, 2, 4),
which 2-anonymous. Since, for 2-anonymity, we require at
least 2 vertices of degree 4 in the sequence, the number of
edges added is the minimum.

D. Labeled Graphs and k-Anonymity
Edge-labelled graphs are a natural model for the represen-

tation of social networks and related forms of data. The Net-
flix movie database [34], can be represented with nodes for
movies and users and labeled edges to represent how users
rank these movies.

DEFINITION 4 (EDGE-LABELLED GRAPH). An
edge-labeled graph is a tuple G = (V,E,Σ) where V is the
set of vertices, Σ is the label set and E ⊆ P2(V )×Σ, is the
set of (labelled) edges. Here P2(V ) denotes the 2-element
subsets of V . E must satisfy the property that there is at most
one ` ∈ Σ such that ({u, v}, `) ∈ E. If ({u, v}, `) ∈ E is a
labelled edge, we say that ` is the label of edge {u, v}.

DEFINITION 5 (LABEL SEQUENCE). For v ∈ V , we
say that Sv = (`1, `2, . . . , `m) is a label sequence of v if
it corresponds to some ordering of the labels of the edges
incident on v. We consider label sequences to be equivalent
up to permutations.1

DEFINITION 6 (LABEL SEQUENCE ANONYMITY). Given
an edge-labelled graph G = (V,E,Σ), a subset X ⊆ V
of vertices is k-anonymous in G if for every vertex v in X ,
there are at least k−1 vertices inX whose label sequence is
equivalent to the label sequence of v. If v and v′ are vertices
with equivalent label sequences we say that they are similar
and write v ≡ v′.

Clearly ≡ is an equivalence relation and so induces a par-
tition X/≡ of X . We now define the anonymization prob-
lem for subsets of labelled graphs.

Label Sequence-Based Subset Anonymization Problem
(LS-SAP):
Given an edge-labelled graph G = (V,E,Σ), X ⊆ V ,
and an integer k, find an edge-labelled graph G′ = (V,E ∪
1We use permutation-invariant sequences rather than multi-
sets to avoid the need to deal explicitly with multiplicities.

E′,Σ∪Σ′) such thatX is k-anonymous inG′ and the num-
ber edges added, |E′|, is minimized.

In other words, we would like to k-anonymizeX by adding
the minimum number of new labelled edges to G. Note
that the added edges may have labels from an expanded set
Σ ∪ Σ′.
Note: we call E′ an anonymizing set of edges for X .

Example 2 : Here we present a small example of subset
label sequence anonymization. Consider graph H in Figure
1(c). Here, if we have X = {v1, v2, v5, v6}, with k = 2
similar to Example 1, adding the dotted edges in Figure
1(d) with the given edge labels gives us 2-anonymity. In this
case it is not sufficient just to have a 2-anonymous degree
sequence; we must also consider the labels of incident edges
for each vertex.

E. Label Bag Based Graph Anonymity
Here, we give the formal definition of label-bag (LB) based

graph anonymization problem. In this work, we assume that
a graph is undirected and simple, i.e., there is no self-loop
and no multiple edges between two nodes. A graph G is
defined as a quadruple (V,E, L, λ), where V is the set of
nodes, E ⊆ V × V is the set of edges, L is the set of edge
labels, and λ : E → L is the mapping from an edge to a
label. Note that each node vi ∈ V has its identity (i). Then,
the label bag is defined as follows:

DEFINITION 7 (LABEL BAG; LB). For an edge-labelled
graphG, the label bagLBi of a node vi inG is the multi-set
of edge labels, such thatLBi = {λ(e) | e ∈ E and e has vi in
either of the connected nodes.}

Let us consider the the example in Figure 2. Figure 2 (a)
is the original graph, and Figure 2 (b) is obtained by re-
placing the node names with identifiers. LB1 = {a, b}
and LB2 = {a, b, b}. Hereafter, we abbreviate the label
bag as the concatenation of labels, such as LB1 = ab and
LB2 = abb.

Next, we define the concept of label-bag based k-anonymity.

DEFINITION 8 (LABEL-BAG BASED (LB) K-ANONYMITY).
Given an edge-labelled graph G and an integer k, G is said
to be k-anonymized, if there exist at least k nodes with the
same label-bag LBi for any node vi ∈ V .

For example, Figure 2 (b) is 2-anonymized, because v1 and
v3 (v2 and v4) have the same LB ab (abb, resp.). Then,
the label-bag based anonymization problem is defined as fol-
lows.

DEFINITION 9 (LB K-ANONYMITY PROBLEM [21]).
Given an edge-labelled graph G and an integer k(≥ 2),
the LB k-anonymity problem of G is to construct a graph
G′ = (V,E ∪∆E,L, λ), such that G′ is LB k-anonymized.

As can be seen from the definition, in this problem, we only
allow edge addition as the graph modification operation. No-
tice that introduction of new labels is not allowed, either. In
[21], Kapron proved that the computational complexity of
this problem is NP-hard when k > 2.

Let us take a look at Figure 2, Figure 2 (b) can further
be anonymized by adding an edge (1, 3) with label b. As
a result, the graph is 4-anonymized, because all four nodes
have the same LB abb.

From a practical point of view, it is important to make
G′ as similar to G as possible to minimize information loss
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(a) Graph G (b) 2-anonymized sub-
set Anonymity

(c) Graph H (d) 2-label sequence
Anonymization of X in
H

Figure 1: Example 1: D-SAP and Example 2: Subset Label Sequence Anonymization
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(c) LB 4-anonymity
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Edge addition

Figure 2: LB k-anonymity example.

from the original graph. To this end, |∆E| should be min-
imized and the edges to add (∆E) should be chosen care-
fully in such a way that the utility of the graph is maintained
as much as possible. In this work, we exploit several graph
utility metrics, and incorporate them in the anonymization
algorithm.

F. Ant Colony Optimization
Ant colony optimization (ACO) [7, 11, 12, 33] is a general-

purpose, biologically-motivated, population-based, discrete
optimization paradigm that can be applied to a wide variety
of problems.

ACO is based on a number of primitive processing ele-
ments, each operating in parallel with little centralized con-
trol. In ACO, the processing elements are called ants, and
the collection of processing elements is called a colony. In
each iteration, each ant i generates a candidate solution xi,
and the set of solutions generated by all ants is used to up-
date a central data structure, conventionally called τ , that
can be thought of as representing the collective wisdom of
the group. In generating its solution in a given iteration, each
ant makes use of the τ data structure, as well as making use
of a problem-dependent heuristic function η.

A number of different algorithms [1, 3, 8, 10] have been
introduced within the ACO paradigm. The abstract frame-
work presented in Figure 1 describes most of these algo-
rithms for a static combinatorial optimization problem such
as TSP. The different ACO algorithms that have been stud-
ied are generally similar in the SolutionConstruction step,
but different in the PheromoneUpdate step. One of the ear-
liest ACO algorithms was Ant System (AS) [7, 11], and one

of the currently best-performing ACO algorithms isMAX -
MIN Ant System (MMAS) [32, 31, 33].

In applying ACO to a given problem, the τ data structure
would include an entry for every potential solution compo-
nent for that problem. For the graph anonymization prob-
lem described earlier, the set of solution components would
include every potential labelled edge that can be added to
the graph. The greedy heuristic described earlier consists of
two stages: in the first stage, the graph is partitioned into
subgraphs; in the second graph, edges are between differ-
ent subgraphs. We would apply ACO in the second stage of
the algorithm. Thus, the solution components would consist
of every potential edge between two nodes in two different
subgraphs.

Consider two such nodes i and j. The pheromone amount
τij varies over time and represents the extent to which the
collective wisdom of the colony is inclined to add the edge
from i to j. The heuristic information ηij represents a static
problem-dependent heuristic function that represents the “good-
ness” of adding an edge from i to j. In the present work, the
η function would be based on the greedy heuristic described
earlier.

To construct a candidate solution, each ant starts with an
empty solution and adds solution components, one by one.
In adding each solution component, an ant selects among
the still-available feasible solution components, and chooses
among them according to the roulette-wheel equation:

Pr(select (i, j)) =
[τij ]

α · [ηij ]β∑
(a,b)∈D[τij ]α · [ηij ]β

(1)
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Table 3: Experimental dataset.
Category Name
Synthetic Small World Graph [27]
Real 1 Speed Dating Data [17]
Real 2 arXiv E-print Archive [28]
Real 3 Enron Email Data [22]

where D represents the set of available feasible edges, and
α and β are external parameters used to adjust the relative
emphases of the two terms.

Once all ants construct candidate solutions, the pheromone
structure is updated in some way based on the constructed
solutions. Different ACO algorithms differ in the specifics
of the pheromone update stage. In the approach we follow
in this paper, the ant with the best solution constructed in
the current iteration, called the iteration-best ant, deposits
pheromone on the solution components that make up its con-
structed solution. Suppose the iteration-best ant is ant k.
Then, all edges (i, j) included within ant k’s solution would
have their pheromone τij values increased by an amount that
is proportional to the quality of the constructed candidate so-
lution.

III. EXPERIMENTAL RESULTS FOR
LABEL BAG BASED
ANONYMIZATION

A. Experimental environment
We conducted a series of experiments to evaluate the ef-

ficiency and effectiveness and viability of the ACO frame-
work on anonymization problems. The experimental envi-
ronment is a PC (2-Intel Xeon L5520 2.27 GHz CPU Quad
Core, 24 GB memory), and the program is written in Java
compiled by Java JDK 1.8.

B. Experimental dataset
The experimental datasets are shown in Table 3. We try

and keep our experiments for label bag based anonymiza-
tion as close to those in [23] to show easy comparison. We
use synthetic data for testing the proposed algorithm in con-
trolled situations, while it is also tested using several real
datasets.

C. ACO Parameters
For these experiments, we used the parameters for ACO

shown in Table 4. We vary k values identically to the orig-
inal paper. The ACO parameters were chosen based on re-
sults garnered and comparison to the findings in the original
paper. These parameters gave us the best results. To note

Initialization
while (termination criteria not reached) do

SolutionConstruction
LocalSearch // optional
PheromoneUpdate

Figure 3: Algorithmic framework for ACO algorithms.

Table 4: Ant Colony Optimization Parameters
Parameter Value

Number of Ants 10
α 1
β 0
ρ 0.05
Number of Iterations 300
k varying

Figure 4: Experimental results: Synthetic varying k
(top) and varying L (right).

here is that some chosen values for α and β led to failure of
the procedure.

D. Experimental results
Due to the fact that social networks are well-modelled by

the small world graph, we use a Small World Graph with 550
nodes as the synthetic data. Figure 4 shows the result when
varying k (top) and varying the number of labels L (bot-
tom). The vertical axis (cost) is the number of edges added
to anonymize the graph, which is typical metric for this type
of procedure. We compare the feature-based grouping (FB)
and the clustering-based grouping using different distance
metrics (C1 to C3) similar to the original paper.

We can observe that both k and L have positive effects to
the total cost. In Figure 4 (top) the results compare closely
with the original algorithm, however we can clearly see bet-
ter performance using ACO, compared in Table 6.

Table 5 shows the cost for anonymization using Real 1,
which contains 550 nodes, ≈ 8,400 edges, and 2 kinds of
labels. The max degree of this graph is 22 and the aver-
age degree is approximately 15. The results are similar to
the original paper in the sense that the clustering-based al-
gorithm basically outperforms the feature-based grouping
when k is small, whereas the feature-based algorithm per-
forms best when k is large. However, there are clear im-
provements to the cost, namely number of edges added for
most cases. We also show a direct comparison of anony-
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Table 5: Experimental result: Real 1.
k Feature Clustering-1 Clustering-2 Clustering-3
5 160 108 110 131
10 380 312 315 300
20 680 555 520 500
30 700 600 650 606
50 1205 1225 2004 1720

Table 6: Comparison result for Real 1.
k Feature Clustering-1 Clustering-2 Clustering-3
5 160(169) 108(112) 110(117) 131(131)
10 380(398) 312(309) 315(312) 300(291)
20 680(664) 555(567) 520(526) 500(540)
30 700(NA) 600(NA) 650(NA) 606(NA)
50 1205(1259) 1225(1325) 2004(2239) 1720(1820)

mization cost from the original paper and our methods in
Table 6. We can clearly see in most instances our procedure
including ACO did better..

Figure 5 (top) compares three real datasets (Real 1, 2, and
3) with different k using feature-based grouping. More pre-
cisely, Real 2 consists of≈16,800 nodes and≈ 48,000 edges
with 3 kinds of labels. Average and max degree are 5.00 and
110, respectively. Real 3 contains ≈ 37,000 nodes and ≈
368,000 edges. Notice that the labels are randomly gener-
ated. We can observe that the total cost is quite different
depending on the dataset, because the graph size is different.

Figure 5 (bottom) shows the time breakdown for each al-
gorithm applied to Real 1. We see clearly here that the
ACO procedure is a time hog compared to the other com-
ponents. However, we still see good results in a relatively
small amount of time.

Table 7 compares the results of utility-based methods us-
ing Real 1 dataset. The row labelled “Original” shows the
utilities for the k-anonymized data generated by the origi-
nal baseline method where utility is not taken into account.
The rows below show the respective utility values computed
from the anonymized graphs considering the correspond-
ing utility metrics. The result shows that, by the proposed
method using ACO, the utility metrics changed (3.28 to 2.777
for ASPD and 0.45 to 0.19 for ACC), which are more close
to the values in the non-anonymized graph. Unfortunately,
EMD-based (Earth Movers Distance) methods (EMDD and
EMDL) did not work well, and the values did not change
much, which is as expected. This is due to the fact that the
number of labels were small. We plan to evaluate these met-
rics using larger datasets in the future. For ASPD (average
shortest-path distance) and ACC (average clustering coeffi-
cient), the results are very good.

IV. EXPERIMENTAL RESULTS FOR
K-LABEL SEQUENCE

ANONYMIZATION

Table 7: Experimental results: utility-based methods
(Real 1).

Utility of anonymized graph
Utility Cost EMDD EMDL ACC ASPD

Original 160 0.0198 0.0074 0.0455 3.2840
EMDD 160 0.0198 0.0074 0.0431 3.2954
EMDL 160 0.0198 0.0074 0.0431 3.2954
ACC 160 0.0198 0.0074 0.0051 2.5269
ASPD 160 0.0198 0.0074 0.0192 2.7787

Figure 5: Experimental results: cost for different
datasets (top) and time breakdown (bottom).

Table 8: Experimental environment.
Component Description
CPU 2 - Intel Xeon L5520 2.27 GHz (4 cores)
Memory 24 GB
Language Java
Compiler Java JDK 1.8

A. Experimental environment
We keep the same environment for the work on k-label se-

quence anonymity. Knowing ahead of time that the problem
is proven to be NP-hard in [6], we were hopeful of getting
some interesting results in the positive or direction.The ex-
perimental environment was

B. Algorithm Description
The Code for this experiment is split into two different

parts, the graph generator (small world graphs), and the main
anonymization algorithm. First the graph generator gener-
ates a graph by the user defining how large of graph (num-
ber of nodes), how many label types, and how many edges to
initially add to the graph. This is outputted to a file and there
is no way of knowing if the graph is realistic or not. Next
the graph is read into the main anonymization algorithm.

The main anonymization algorithm is based on an ACO
System. It first starts by generating all possible edges that
can be added to the graph. During each iteration a set num-
ber of ants are sent out to construct a solution to our problem,
in this case anonymization of a graph. Each ant adds one by
one a possible viable edge to the graph, checking each time
whether the graph is anonymized. Once all the ants find a
solution, pheromones are placed one the edges in which the
ant had travelled. The update is done in the following man-
ner:
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Table 9: Ant Colony Optimization Parameters
Parameter Value

Number of Ants 8
α 1
β 0
ρ 0.05
Number of Iterations 500
k 3

τ(r, s) (1− α) · τ(r, s) +

m∑
k=1

∆τk(r, s) (2)

where,

∆τk(r, s) =

{
1/Lk , if (r, s) ∈ tour done by ant k
0 otherwise

where Lk is the number of edges added by the ant, τ(r, s)
is the pheromone on an edge, and α is the decay rate of the
pheromones (set by the user)[18].

The more ants that select a given edge in the graph each
time increases its probability of being selected again next
time. The probability that an edge is selected by an ant is

pk(r, s) =
[τ(r, s)]· [η(r, s)]β∑

u∈Jk(r)
[τ(r, u)] · [η(r, u)]β

(3)

where Jk(r) is the set of currently viable edges that can
be added to the graph, and β is a parameter set by the user
that determines the importance of the pheromone. After an
edge is selected and added, all other edges in Jk(r) that are
parallel to that edge are removed from Jk(r).

The idea is that the ants will create hot spots in pheromones
for certain edges which in turn will make them likelier to be
picked. The hot spot edges that are created are then hope-
fully part of a somewhat optimal solution.

Future study will need to include optimization. Currently
every time an edge is added it takes O(n) time to check for
anonymity. This will be reduced toO(1) which will dramat-
ically increase the efficiency of the algorithm.

C. ACO Parameters
For these experiments, we used the parameters for ACO

shown in Table 9. We fix k to 3 matching the lower bound
to the hardness result in [6] for k-label sequence anonymi-
zation. The ACO parameters were chosen to give optimal
results for graph anonymity. To be noted here is that certain
values for α and β led to unattainable results. It was through
trial and error that these values for the ACO portion of the
procedure were found to be optimal.

D. Experimental dataset
The experimental datasets are shown in Table 10. We use

synthetic data for testing using a graph generator to use small
world problems here. We found with our current implemen-
tation of ACO on k-label sequence anonymity, that the pro-
cedure would take large amounts of time, too long for proper
experimentation. To note here is the procedure never failed
to anonymize a graph for large sizes, it would however take

Table 10: Experimental Synthetic dataset.
Nodes Edges Edges Added

10 60 6
15 80 16
20 95 22
25 113 26
30 130 31
35 147 40
40 168 41
45 182 60
50 200 50
55 217 52
60 234 55

Figure 6: Experimental results: Synthetic graphs vary-
ing Nodes

long periods of time to do so and lead to close to complete
graphs in doing so. However, for small graphs as in Table 10,
the procedure performed well.

E. Experimental results
Using small world graphs, we generate Small World Graphs

varying the number of nodes between 10 and 60 as the syn-
thetic data. Figure 6 shows the result. The vertical axis (cost)
is the number of edges added to anonymize the graph, a typ-
ical metric for this type of procedure.We keep k constant at
3 for all experiments to adhere to the lower bound for the
Hardness result shown in [6].

We can observe that for small graphs, ACO performs ad-
mirably. It is promising to see that even for small graphs,
a known NP-Hard problem given the ability to traverse the
graph with ACO, we can have good results. The maximum
% of nodes added for any graph is less than 25%.

V. FUTURE WORK

The future work is bountiful, considering the exploration of
ACO techniques on known graph anonymization is novel
and new. We initially wish to pursue a systematic study of all
major graph anonymization techniques and try to determine
which instances provide the best chance of successful im-
provements to known procedures. Gaining the knowledge
and insight from the work in this paper will help pave the
way for this type of endeavour.

We also wish to see if we can improve the current results
in k-label sequence anonymity. Although in [6], a problem
was defined for k-label sequence anonymity, there was no
clear guidance as to the means by which such a graph should
be made anonymous. It was by the power of ACO alone, that
solutions were able to be found quite well for small graphs.
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However, the code and implementation on k-label sequence
anonymity can still be optimized and improved. Currently
every time an edge is added it takes O(n) time to check for
anonymity. This will be reduced to O(1) which will dra-
matically increase the efficiency of the algorithm. Giving
some insight to the ants prior to their departure often helps
them returns with a solution. This can clearly be seen for
label bag based anonymization, where a clear algorithm and
method of anonymization was presented in [23], and using
these techniques was clearly shown to provide slightly better
results when ACO is added in.

There may also be area of study initiated in creating graph
anonymization techniques specifically tailored to the strengths
of ACO. This area has not been explored to date and may re-
sult in efficient algorithms for improving or solving graph
anonymization techniques that are known hard problems.

VI. CONCLUSION

We study the problem of anonymizing graphs and looked
at the application of Ant Colony Optimization to known pro-
cedures of graph anonymization. We make the following
contributions to the field. For k-label bag based anonymity,
based on the procedures laid out in [23], we mirror their ex-
perimental work and show improved cost factors in terms
of edges added. We do however see that the added ACO
component adds an expense to the Time cost of the proce-
dure, however we find this addition to be negligible towards
the overall gain in optimal results. We also take an initial
approach using ACO to try and conquer the known NP -
hard problem of k-label sequence anonymity. Without much
guidance in terms of procedural steps for this task, our ini-
tial approach has been shown to be effective for small world
graphs under size V = 60 nodes. There is still much room
for improvement to this aspect of our paper to make the pro-
cedure viable for large graphs.

The next natural step of our research is to see if we can
further optimize our work in §IV. Looking into the the way
the graphs are actually anonymized using ACO may see an
overall space savings of the procedure which seems to be the
main hurdle at this point. Furthermore, it would also be vital
to look into which other graph anonymization procedures
can fit nicely into the framework of ACO.

It is important to note that research is ongoing to find ap-
plicable relaxed versions of these theoretical based problems
that adhere to certain applications. Taking such theoreti-
cal problems as the base may lead to efficient solutions to
anonymity constraints on such large scale networks. There
may be other approaches to anonymizing graphs that may
prove just as effective and with better efficiency. It has been
shown that certain types of anonymization are not effective
(naive anonymization for example), but there may still be ef-
fective approaches that have not been looked at. The whole
field of graph anonymization is fairly new, there are many
avenues within it still to be developed. Newer notions of
l-diversity and t-closeness may have some reasonable solu-
tion spaces that could be shared with relaxed versions of the
anonymity constraints.

The delicate balance between user privacy and require-
ments for analysis is something that needs to be considered
when data of a private nature is released to third parties. This
is what motivates our results in this paper. With a strong
grasp now on the underlying complexity of how ACO can

be applied to graph anonymization, we can now move for-
ward and examine efficient solutions to the many anonymity
problems at hand. This inaugural work in ACO techniques
applied to graph anonymization will pave the way for future
research and development in this rapidly expanding and cru-
cial field.
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