
Efficient Computation of Group Skyline Queries on 
MapReduce

Basketball requires five people to form a team; therefore, our 
aim was to compile a team of the five best players, referred to 
as the 5-group. These five players are selected from among 
four hundred players, whereupon statistical data for the team 
is compiled by summing the values associated with the five 
players. To ensure a competitive team the user aims to select a 
team that cannot be dominated by any other teams. Fantasy 
baseball operates similarly except that nine players are 
selected instead of five. Any increase in the number of people 
participating in a game will produce exponential growth in 
computing costs.  

Group skyline queries have not attracted as much 
attention from researchers as have traditional skyline queries 
[7, 9, 23]. The intuitive approach would be to find skyline 
points in dataset D for the generation of a group skyline. 
However in practice this approach is generally not feasible. In 
the following, we provide examples to illustrate the 
contradictions inherent in this approach. Consider the six 
players listed in Fig. 1.1 from which we need to select three 
players to make up a team. Table 1.1 lists the statistics 
associated with the six players. As shown in Fig. 1.1, three of 
these points (P1, P2, P5) are skyline points. An intuitive 
approach would result in the selection of the group (P1, P2, 
P5). The brute-force method leads to enumeration of all 
groups from C (6, 3), as shown in Table 1.2. The attributes of 
each combination are generated using the sum operation. In 
Fig. 1.2, we can see that g3, g6, and g13 form the group 
skyline. Only g3 includes a skyline point; therefore, the other 
groups are incompatible with the intuitive solution.  

Obtaining the group skyline is a computationally heavy 
task, the complexity of which increases exponentially with the 
amount of data. For example, there are approximately 500 
active NBA players and each is generally represented by the 
following five attributes: points, rebounds, steals, assists, and 
blocks. This leads to a total of  possible combinations. 
Each group has five players; therefore, we need to sum the 
statistics to generate new group statistics. Only after generating 
all possible groups can we find all group skylines; however, 
this incurs high computational costs. Any increase in the 
number of tuples leads to exponential growth in computing 
costs. Selecting five people from among 50  produces 

=2,118,760 possible combinations. Doubling the number of 
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I. INTRODUCTION

Modern databases and information systems have 
evolved support mechanisms to satisfy vague or imprecise 
user requirements [1, 2]. One such mechanism is the skyline 
query, which is widely used in commercial applications, such 
as multi-criteria decision analysis, data mining, and navigation. 
Many real-world scenarios require a combination of two or 
more tuples in order to find the best option. The use of k 
points to organize a group results in a k-group, the most 
famous of which is online fantasy sports games in which users 
select their favorite team from an active database of player 
statistics. Around the world, the fantasy sports industry is 
bringing in billions of dollars.  

To further illustrate application of a k-group, let us 
consider two types of fantasy sports: basketball and baseball. 
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people increases this to to  =75,287,520 possible 
combinations. In this sample, doubling the number of people 
increases the calculation by approximately 35 times. Thus, 
determining an effective means to solve these queries is a 
pressing challenge. 

The group skyline approach has two main problems: 
considerable computational overhead, C (m, n) and high levels 
of memory required to store all candidate sets. 

Thus far, researchers have failed to provide a distributed 
solution for the group skyline problem facing the immense 
computational costs of massive candidate sets. The purpose of 
this paper was to develop an efficient group skyline algorithm 
based on MapReduce and then conduct experiments to assess 
the validity and effectiveness of the proposed method. 

Table 1 lists the symbols used in this paper. A given 
dataset D contains many points P; i.e., D =  {P1, P2 …, Pn}. 
Each point P has m attributes; i.e., P = [A1, A2 …, Am]. We 
assume that the value of each attribute is a positive integer. In 
the following discussion, we operate under the assumption that 
a larger value is always a better target. 

In the following we use an example to introduce the 
concepts of group domination and aggregate functions. Figure 
1.4 presents two three-member combinations: teams G and G'. 
The use of the SUM function results in <10, 9> and <8, 9>. 
According to Definition 5, G dominates G '. However, using 
the MAX function, we obtain <4, 5> and <5, 5>. According to 
Definition 5, G’ dominates G. This example clearly illustrates 
that the domination relationship between these two groups 
differs according to Aggregate function F. 

TABLE I.  PLAYER DATASET 

Player Points Rebounds 

P
1 6 5 

P
2 10 0 

P
3 3 6 

P
4 3 3 

P
5 4 6 

P
6 2 2 

TABLE II. TABLE 1.2 AL GROUP OF C (6, 3) 

Fig. 1.1 Example of a skyline point 

Fig. 1.2 Example of a group skyline 

II. RELATED WORK

The previous research most relevant to this study on 
skyline groups can be found in [6], [8], and [22]. The main 
bottleneck in a skyline group is memory, as an unfeasibly 
large amount of memory space is commonly required to store 
all of the candidate sets. An incremental approach is proposed 
in [8] to overcome this problem. That method is based on the 
following equation: 
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. This method aims to find . This is accomplished by first 
finding  and .  is equal 
to , as shown in Fig. 2.1. 

In [22], search space pruning and input pruning are 
proposed to filter the number of input tuples. This approach 
enables the algorithm to reduce the number of combinations in 
subsequent generations. The aim of input pruning is to find the 
points dominated by k or more points. Points can then be safely 
removed without affecting the final results. If point P is 
dominated by h points (h ≥ k) and G contains point P, we 
generate another group G' by replacing P in G with h. Then G 
'always dominates G. Thus, G containing point P is not a group 
skyline. 

Search space pruning (SSP) and incremental pruning (IP) 
are based on the same concept; however, SSP is implemented 
using dynamic programming to reduce computational cost, as 
shown in Fig. 2.2. 

Single tuples can be combined to generate new 
(combinatorial) tuples. Combinatorial skylines [6] and skyline 
groups pose similar problems. In [6], Aggregate function f is 
defined by Combinatorial functions f. A plurality of tuples 
produce combination gp using Combinatorial functions f. 
This paper presents two methods to deal with combinatorial 
skyline problems. 

 Fig. 2.1 Incremental method 

 Fig. 2.2 Search space pruning 

III. PROPOSED ALGORITHMS

In this section, we present three MapReduce algorithms. 
First, we propose the MR-Group Skyline (MRGS) method on 
which two-stage MapReduce is used to address the group 
skyline. This method is described in Section 3.1. Second, we 
use an index to ameliorate the problem of workload imbalance 
in the MRGS. This method is described in Section 3.2. Third, 
we propose the theorem Cascaded-pruning, which is used to 
reduce the number of candidate sets, this method is described 
in Section 3.3. 

A. MR-Group Skyline (MRGS) method

This algorithm employs MapReduce in two phases.
Figure 3.1 illustrates the overall structure of the algorithm. 
The left half represents the first phase, which is responsible for 
generating all possible k point groups. The right half 
represents the second phase, which is responsible for detecting 
group skylines. Dataset D is input into the first phase to 
generate all combinations Dk. Then Dk  is input into the 
second phase to generate the group skyline. 

In the first phase, to calculate all possible combinations, 
dataset D is partitioned into three blocks, as shown in Fig. 3.2. 
Each mapper produces a number of keys according to the 
number of reducers. In the following example, num is used to 
represent the number of reducers. In Fig. 3.2, num is equal to 
2; therefore, the mapper produces two key-value pairs, with 
the values of 1 and 2, respectively. Each point is duplicated 
num times before being sent to the reducer based on a key. 
After receiving the intermediate results, the reducer begins 
generating combinations. We assume that dataset D includes 
[P1, P2, P3, P4, P5, P6] and that there are two reducers. This 
method generates a combination of all Pn prefixes, which 
undergo round-robin distribution. In Fig 3.2, r1 is used to 
illustrate the meaning of the prefix. Our aim is to find the 2-
group. In the round robin stage, r1 obtains P1, P3 and P5 to 
generate [(P1, P2), (P1, P3), (P1, P4), (P1, P5), (P1, P6), (P3, P4), 
(P3, P5), (P3, P6), (P5, P6)]. Following completion of this phase, 
all possible combinations are output. 

Figure 3.2 illustrates the process of the Map phase in 
which each point is duplicated twice. The mapper generates 
key-value pairs and the reducer generates groups according to 
the Pin prefix. In the following, we use r1 to illustrate this 
process. 

Figure 3.2 illustrates the process of the Reduce phase. 
Reducers are used to generate combinations according to in 
prefix. For example, reducer r1 calculates the prefixes i1, i2, 
and i3. Prefix i4 is equal to 7, which is greater than |D|; 
therefore, it is not processed. The reducer r1 utilizes points P1, 
P3, and P5 as prefixes for the generation of output 
combinations. There is no particular need to specify the key 
value at the output. Reducers r1 and r2 are set to 1, as shown 
in Fig. 3.2. When the first phase ends, we obtain obtain Dk.  

In the second phase, the group skyline is calculated. The 
Map function uses the output Dk of the first phase as input for 
the second. Each map receives a portion of Dk with which to 
calculate the local group skyline. The mapper generates 1-
value pairs. Because only one reducer is used to process the 
global group skyline, all of the key values are 1. After the 
reducer receives the map output, it detects the global group 
skyline and outputs the results , as shown in the Fig. 
3.3. 

The output from the first phase is received by the 
mapper of the second phase, as shown in Fig. 3.4. Each map 
calculates a local group skyline. Mapper m1 receives 5 groups 
and outputs 3 group skylines. The reducer collects all of the 
local group skylines from the mapper in order to calculate the 
global group skyline. Reducer r1 receives local skyline groups 
from mapper m1, m2, and m3 with which to calculate the final 
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results, as shown in Fig. 3.4. In this paper, the skyline 
algorithms use the BNL method. 

Fig. 3.1 Overview of proposed method 

Fig. 3.2 Phase One: Group Generation 

Fig. 3.3 Second phase of MapReduce 

Fig. 3.4 Example of Phase Two 

B. MR-Index Group Skyline (MRIGS) method

The MRGS is able to process group skyline problems;
however, this method can lead to computational load 
imbalance. Suppose that the dataset holds data associated with 
300 players. MRGS uses four reducers to generate the 3-group. 
In the results of the first phase, the r1 produces 1.4 million 
groups, r2 and r3 produce 1.1 million groups, and r4 produce 
0.8 million groups. Obviously the workload of r1 is larger than 
that of the other reducers. In this study, we propose a new 
method, referred to as the MapReduce Index Group Skyline 
(MRIGS), which uses C (n, k) group average distribution to 
achieve load balancing.  

 This algorithm implements MapReduce in two 
phases. It differs from the MRGS only in the first phase. The 
relevant modifications are illustrated in Fig. 3.5. 

Our aim is to find all k-groups in D in order to 
determine the number of groups generated by C (m, k). S 
represents the number of generated groups, denoted as G [G1, 
G2, G3..., Gs]. We can identify the members of Gx (1≤ x ≤s) by 
implementing the combination formula. For example, r1 
generates G5. The members of G5 obtained using the 
combination formula are P1, P2, P3, P4, P8. These points are 
then used to calculate the value of G5. Therefore, when we 
know that will generate S group. Our aim is to distribute these 
groups evenly to every reducer. 

In the Map phase, the number of reducers is used to 
generate key-value pairs to be sent to each reducer. In the 
Reduce phase, the reducer receives the data after calculating 
SD (i.e. SD=S/num). Then it based its ID to generate the 
combination. For example, the six points of D are used to 
obtain the 2-groups. This results in the generation of 15 groups 
(S= =15). As shown in Fig. 3.6, this method is first builds an 
index of the dataset using two reducers, such that SD = 7. 
Reducer r1 then generates 7(SD) combinations: G1 ~ G7. 
Reducer r2 generates the remainder of the combinations: G8 ~ 
G15 (Fig. 3.6). 

Fig. 3.5 Overview of proposed method 

Fig. 3.6 Example of Reduce-Index used in first phase 

C. MR-Index Group Skyline Pruning (MRIGS-P) method

MRGS and the MRIGS are able to process group
skyline problems; however, the computational complexity of 
these two methods is still high. To ameliorate this, certain 
unnecessary points can be pruned before the algorithm is 
tasked with producing all of the combinations.  

In this study, we propose a new method based on input 
pruning. The proposed method uses two tests to achieve 
pruning and reveal new features in MapReduce. The proposed 
method is referred to as Cascaded-pruning.  

Given dataset D and point Pi ∈ D, let Pi.C denote the 
number of points that dominate Pi, and Pi.DL denote the set of 
points that are dominated by Pi. Theorem 1 below is used to 
prune the points that cannot be included in the combination.  
Lemma 1. Point Pi can be safely pruned if Pi.C ≥ k. 
Lemma 2. If point Pi can be pruned, then all of the points in 
Pi.DL can be pruned. 
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Lemma 1 is based on the supposition that if the number 
of points dominating Pi is greater than or equal to k, then any 
combination with Pi will be dominated by the combination of 
the points selected from the set dominating Pi. Lemma 2 is 
also obvious because Pi dominates any single point in Pi.DL; 
therefore, when Pi is pruned, all of the points in Pi.DL can be 
pruned.  

Theorem 1 (Cascaded-pruning). Given dataset D and 
point Pi ∈ D, Pi, set Pi.DL can be safely pruned if Pi.C ≥ k.  
Proof. Let Pi.C = k and Px ∈ Pi.DL, then Px.C is at least k+1 
since Px is dominated by Pi. Consequently, Px can be safely 
pruned because Px.C ≥ k. Therefore, all the points in Pi.DL 
can be safely pruned if Pi is pruned.   �

First, each point increase two attributes Pi.C and Pi.DL. 
In the Map phase, the algorithm performs input pruning and 
records Pi.C and Pi.DL from the surviving points. Map sends 
out the point when Pi.C is less than k. The remaining points 
are pruned to prevent unnecessary points being sent to the 
reducer. After the reducer receives all of the points, it 
performs Cascaded-pruning. As it receives points from 
different maps, they must be checked at least once. The points 
received by the reducer are not compared with other points 
from the same map. In Cascaded-pruning, if there is a Pi.C 
larger than or equal to k, then this point and the set Pi.DL will 
be pruned. This feature can save the cost of pruning. 

For the example, consider the sixteen players listed in 
Table 3.1, in which the points that will eventually be pruned 
are marked in boldface. In this example, as long as Pi.C is 
greater than or equal to 2, then Pi will be pruned. P2, P7, P8, 
P9, P11, P12, and P14 are surviving points. An input pruning 
method was proposed in [24]; this method accesses every 
point and records the count of these points. This count is then 
used to determine which points need to be pruned. The method 
proposed in this paper does not need to access every point in 
order to prune unnecessary points. 

TABLE III. T ABLE 3.1 INPUT DATASET 

TABLE IV. TABLE 3.2 INPUT DATASET M1 IN MAPREDUCE 

In the MapReduce environment, D is partitioned into 
multiple sub-blocks. In this example, D is partitioned into two 
sub-blocks (M1 and M2), as shown in Tables 3.2 and 3.3. In 
the Map phase, the algorithm detects two blocks using the 
above method. Map sends out the point when Pi.C less than 2. 
In the Reduce phase, the reducer receives data from all of the 
blocks, as shown in Table 3.4. In this table, the mapper 
column lists the points that belong to each mapper, which are 
used to perform Cascaded-pruning. These points are not 
compared with other points from the same map. The reducer 
checks the result of P5 in Table 3.5. Pi.DL (N) represents the 
point newly added in the reducer phase. This column is 
established for the convenience of explanation; the actual 
algorithm is the same Pi.DL. After the Cascaded-pruning is 
complete, P10 is recorded in the P5.DL. P5 is pruned because 
P5.C is equal to 2. According to Theorem 1, when P is pruned, 
the point at P5.DL is also pruned; therefore, P10 can be pruned. 
When P7 is checked by the reducer, P7 is not compared with 
P10. 

Table 3.6 presents the final results. Table 3.6 and Table 
3.1 contain the same results, which demonstrates that 
unnecessary points can indeed be safely pruned. 

TABLE V. TABLE 3.3 INPUT DATASET M2 IN MAPREDUCE 

TABLE VI. TABLE 3.4 INPUT DATA USED BY REDUCER 
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TABLE VII. T ABLE 3.6 DATA OUTPUT BY REDUCER 

IV. EXPERIMENT RESULTS

The algorithms were implemented in Java 1.6. All 
experiments were executed on Hadoop 1.2.1 using a cluster of 
five commodity machines. Four of the machines use an Intel 
Core2 Duo E8400 3GHz processor with 4GB RAM. The last 
machine uses an Intel Core2 Duo E8400 3GHz processor and 
2GB RAM. The machines were connected by a 100Mbps 
LAN. 

For dataset D, we produced synthetic datasets and changed 
various sizes and attributes. The types of data distribution 
included independent data distribution, the correlated data 
distribution, and anti-correlated data distribution, all of which 
are commonly used in skyline queries. The parameters and 
ranges are summarized in Table 4.1. 

Table 4.1 Configuration parameters 

The performance of the three algorithms is compared in 
Section 3. We executed these methods use the SUM function. 
In most of the experiments, we measured the runtime of the 
algorithm, the number of groups, and the number of group 
skylines. 

1) Scalability with respect to K
In this experiment we studied the effect of the

number of points per group. Figures 4.1, 4.2 and 4.3 are used 
to plot the execution time against the number of points per 
group, from 3 to 5 for anti-correlated, independent and 

correlated datasets. The size of the dataset was fixed at 200 
(i.e., the number of candidate sets is between 1.3*106 and 
2.5*109). Note that the execution time of this experiment is in 
logarithmic scale for independent and correlated datasets. 

Fig. 4.1 Scalability with respect to k: anti-correlated 

Fig. 4.2 Scalability with respect to k: correlated 

Fig. 4.2 Scalability with respect to k: independent 

In all three data distributions, we found that MRIGS 
and MRIGS-P outperform MRGS, even when K is high. When 
K is 3, MRGS and MRIGS exhibit similar performance. 
Because the number of generated candidates is not very large, 
the execution times of the two algorithms are similar. When K 
is greater than 4, the number of candidates in each set was 
shown to grow exponentially. Both algorithms produce the 
same number of candidates; however, the execution time of 
MRIGS is significantly lower than that of MRGS, due to the 
effect of load imbalance in MRGS. MRIGS-P produced fewer 
candidates than either methods due to its use of pruning. In 
every case, MRIGS-P outperformed MRIGS and MRGS. 

Figures 4.4, 4.5, and Fig. 4.6 plot the number of 
candidate sets against the points per group from 3 to 5 for anti-
correlated, independent, and correlated datasets. Candidate-O 
represents MRGS and MRIGS generated candidate sets and 
Candidate-P represents MRIGS-P generated candidate sets. 
Figures 4.4, 4.5, and Fig. 4.6 clearly shows that MRIGS-P 
generates fewer candidates than does MRIGS. The number of 
candidate sets generated is proportional to the execution time. 
Similar results can be seen in the other two figures. 
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Fig. 4.4 Number of generated groups with respect to k: anti-

correlated 

Fig. 4.4 Number of generated groups with respect to k: 

correlated 

Fig. 4.4 Number of generated groups with respect to k: 

independent 

2) Scalability with respect to size of dataset (|D|)
In this experiment, we examined the effects of the size of the 
dataset. k was fixed at 3 for the independent and correlated 
datasets. In the anti-correlated dataset, k was set at 2. Figures 
4.7, 4.8, and 4.9 plot the execution time against the size of the 
dataset from 100 to 500 for anti-correlated, independent, and 
correlated datasets, respectively. Note that the results of 
MRGS is not shown in this or the following experiments 
because its performance does not exceed that of MRIGS.  

Fig. 4.7 Scalability with respect to dataset size: anti-correlated 

Fig. 4.8 Scalability with respect to dataset size: correlated 

Fig. 4.9 Scalability with respect to dataset size: independent 

In all cases, the performance of MRIGS-P was 
superior to that of MRIGS, except D, when it was equal to 100 
and produced a smaller number of candidate sets, thereby 
reducing execution time. MRIGS-P needs to pre-process the 
dataset (i.e., run k-prune). In cases without a great deal of data, 
the effects of k-pruning are not obvious. 

3) Scalability with respect to number of attributes (m)
In this experiment we studied the effect of the

number of attributes. k was fixed at 4 and data size was fixed 
at 400. Figures 4.10, 4.11 and 4.12 plot the execution time 
against the number of attributes from 2 to 5 for anti-correlated, 
independent and correlated datasets.  

Fig. 4.10 Scalability with respect to number of attributes: anti-
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correlated 

Fig. 4.11 Scalability with respect to number of 

attributes: correlated 

Fig. 4.12 Scalability with respect to number of attributes: 

independent 

Basically, the time required to process queries increases 
with an increase in dimensionality. As a result, the increase in 
execution time displayed in these figures, particularly in the 
anti-correlated dataset, was more pronounced. This can be 
attributed to the fact that any increase in the dimensionality of 
data requires that the algorithm spend more time on the group 
skyline process. 

I. CONCLUSIONS

In this paper, we propose three novel algorithms, namely 
MRGS, MRIGS, and MRIGS-P, for parallelizing group 
skyline computation using a MapReduce framework. Our aim 
was to enhance input-pruning in the MapReduce environment. 
Cascaded-pruning enables the removal of a large number of 
unnecessary points in order to reduce the number of candidate 
sets that are generated. Our experiment results show that 
MRIGS-P outperforms MRIGS and MRGS in all performance 
metrics. 

In the future, we plan to further improve the 
performance by improving the second phase, which at present 
is limited to a single reducer. Constrained group skylines are 
another interesting topic worthy of further study. 
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