
Polymorphic Malware Analysis

Abstract— Nowadays, computer security is a serious issue
which attracts the interest from many nations. To identify
malware, most of industry approaches still center the well-known
technique of signature matching. However, modern polymorphic
malwares use packer to obfuscate their malicious actions. A
sophisticated packer can generate virtually variants of a viral
code, making the signature-based technique easily defeated.

Naturally, applying stochastic approach prompts a potential
solution to handle polymorphic virus. This paper studies an
approach of applying probability distribution for tackling the
two important problems in analyzing polymorphic malware,
which are to identify a potential malware and to detect packer
which malware adopts. For the first goal, we derive a new
frequency-based weight to identify most specific instructions for
each malware family, known as instruction frequency-inverse
malware frequency (��°���) . For the second one, we propose a
new term, obfuscation technique frequency-inverse packer
frequency (���°���) for evaluating the importance of obfuscation
techniques in packers. We have performed the experiment on
4194 real malware and the result is very promising.

Keywords— power law; malware analysis; packer; concolic
testing; formal method

I. INTRODUCTION

Malware [1] or malicious software, is software program
which targets on damaging or disrupting a computer. Popular
kinds of malware include virus, trojans, spammer, flooder,
keylogger, etc. In 2014, according to a report1 from
International Data Corporation (IDC) and the National
University of Singapore (NUS), more than 491 billion dollars
has been spent on the war against malicious software
(malware).

For detecting malware, there are three major techniques
including signature matching, virtual emulation in a sandbox,
and model checking. Malware signature [2] is a binary pattern
characterizing the typical features of malware. Most of
industrial anti-virus softwares focus on identifying the regular
expression based signature for detecting malware. However,
since modern malware tends to adopt the obfuscation

techniques especially with the use of packer for generating new
invariants of malware, they can easily evade signature
matching. For instance, using packer, a polymorphic virus can
generate a complex signature, which is beyond the scope of
regular expressions [3]. Figure 1 presents an example of packer
UPX1 which transforms from the original file (hello.exe) to a
new file (hello_upx.exe). The newly-generated file preserves
the same original functions of hello.exe but has the different
content on the system. Note that packer adopts packing
technique and many other obfuscation techniques which can
generate a complex signature for defeating signature matching.

Figure 1. Example of packer UPX

Virtual emulation sets up a sandbox to explore behavior of
malware. This technique requires a full emulation of system
environment including Window APIs [11]. Not only it is a very
heavy task but also it requires a suitable abstract level which is
not easy. Furthermore, malware can adopt many anti-emulation
techniques for detecting whether it runs on an emulator. As an
alternative, recent research focuses on the approach of model
checking. Model checking technique composes of two steps.
The first step, model generation extracts an abstract model
from binary executables. The control flow graph (CFG) is
commonly chosen as an abstract model. When a CFG is
generated, model checking technique is applied for checking
the typical properties of malware [12][16][17].

1http://www.scmagazine.com/breaches-malware-to-cost-491-billion-in-2014-study-says/article/339167/
2http://upx.sourceforge.net

This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.01-2015.16

GSTF Journal on Computing (JOC)
DOI: 10.5176/2251-3043_4.4.354
ISSN:2251 - 3043 ; Volume 5, Issue 1; 2016 pp. 61-68
© The Author(s) 2016. This article is published with open access by the GSTF.

 Toward an Approach on Probability Distribution for

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

Nguyen Minh Hai
Department of Software Engineering

Ho Chi Minh City University
of Technology, Vietnam

Email: hainmmt@cse.hcmut.edu.vn

Quan Thanh Tho
Department of Software Engineering

Ho Chi Minh Ci ty University
of Technolo gy, Vietnam

Email: qttho@cse.hcmut.edu.vn

Ha Minh Ngoc
Department of Software Engineering

Eastern International University,
Vietnam

Email: ngoc.ha@eiu.edu.vn

 Nguyen Thien Binh
Department of Software Engineering

Ho Chi Minh City University
 of Technology, Vietnam

Email:551105019@stu.hcmut.edu.vn

Packer AntiDebugging Checksumming
Code

Chunking

Indirect

Jump

Obfuscated

Constants

Overlapping

Block

Overlapping

Function
Overwritting Packing SEH

Stolen

Bytes

Timming

Check
TwoAPIs

Hardware

Breakpoints

ASPACK x x x x x x x x x

BJFNT x x x x x x

EXEPACK x x x x x x x

EXESTEALTH x x x x x x x x x x x

EXPRESSOR x x x x x x x x x x

FSG x x x x x x x x

LAME x x x

MEW x x x x x x x x x

MORPHNAH x x x x

MPRESS x x x x x x

NOODLECRYPT x x x x x x x

NPACK x x x x x x x x x

PECOMPACT x x x x x x x x x x

PEENCRYPT x x x x x x x

PETITE x x x x x x x x x

RLPACK x x x x x x x x x

SCRAMBLEv0.1 x x x x x x x x x

SCRAMBLEv0.2 x x x x x x x x

TELOCK x x x x x x x x x x x

UPACK x x x x x x x x

UPX x x x x x x x x

WINUPACK x x x x x x x x

WWPACK32 x x x x x x x

XCOMP x x x x x x x x x

YODAv1.2 x x x x x x x x x x x x

YODAv1.3 x x x x x x x x x x x

PELOCK x x x x x x

PESPIN x x x x x x x x x

According to [4], 80% of modern polymorphic malwares
are obfuscated by packer to create new invariants. Among
them, one notorious example is EMDIVI3 virus, an advanced
persistent thread (APT) which targets on many Japanese
organizations, e.g. government agencies, local governments
and universities. Malware adopts packer for defeating the
signature based technique of anti-virus softwares by
obfuscating its content. Moreover, packer also increases the
difficulty of the reverse engineering since the process of
unpacking or decrypting a packed file may take a very long
time.

In this paper, we study the approach of applying probability
distribution for analyzing malware. Based on this law, we
measure the most important features of malware in two levels.
For the instruction level, we identify the most important
instructions belonged to each malware class. For example,
since most of SEH-virus4 use the technique of Structured
Exception Handler (SEH), the instruction mov fs:[0], esp is
very important. Although these malwares also adopts many
other obfuscation techniques, this instruction is still the typical
feature. In other way, when this instruction is identified in a
sample, it can be infected by this class of malware. By using
the probability distribution, we can measure the importance of
this instruction to such kind of malware.

 For technique level, we calculate the importance of
obfuscation techniques in each packer. For example, Table I
presents some well-known packers, each of which adopts
various obfuscation techniques, e.g. indirect jump. Each
obfuscation technique is deployed in a packer with a different
frequency. However, the problem is that such obfuscation
techniques can also be used not only by the packer code but
also by other parts of the program. In addition, a packer itself

can also have several different versions, whose frequencies of
the obfuscation techniques may be slightly different. Moreover,
since to disassemble a packed program for evaluating the
frequencies of obfuscation technique is by no means a trivial
task, resulting that the evaluated frequencies may not be
perfectly correct. Thus, all of those reasons show that counting
exact numbers of obfuscation techniques detected in a program
may lead to misidentify the presence of packers adopted in this
program. Our key contributions are presented as follows.

 We have developed a tool, BE-PUM[6][7][8] as a
generic model generator with stubs of detecting
obfuscation techniques. During the on-the-fly model
generation, BE-PUM identifies and measures the
frequency of instructions and obfuscation techniques
in each malware.

 Based on BE-PUM tool, we implement a framework
for tackling the two main problems in malware
including identifying malware and detecting packer.

 For malware identification, we derive a new
frequency-based weight, instruction frequency-inverse
malware frequency (��°���) to identify the most
important instructions in each malware class.

 For packer detection, we propose a new term,
obfuscation technique frequency-inverse packer
frequency (���°���) for calculating the favorite
obfuscation techniques in packer. Based on this
weight, we calculate similarity between targeted file
and packer for packer identification.

TABLE 1. Frequency of obfuscation techniques in packer

3https://www.symantec.com/security_response/writeup.jsp?docid=2014-101715-1341-99
4http://www.remove-viruskillers.com/post/What-is-Win32Injector.SEH-Remove-Win32Injector.SEH-Completely-Off-
Your-PC_8_86668.html

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

 We perform the experiments on 4194 real malware
taken from VirusTotal5 for measuring the
effectiveness of our approach.

The rest of this paper is organized as followed. Section 2
briefly describes the preliminaries. Section 3 introduces the
overview of our method. Section 4 illustrates our case study on
analyzing EMDIVI malware. Section 5 presents our
experiments. The final section 4 discusses the conclusion and
some future works.

II. PRELIMINARIES

 In this section, we present the basic concept of BE-PUM,
packers, the obfuscation technique in packer and the
probability distribution.

A. BE-PUM

We have been developing a tool BE-PUM (Binary
Emulator for Pushdown Model generation), for generating a
precise control flow graph (CFG) against obfuscation
techniques of malware, e.g., indirect jump, self-modification,
overlapping instructions, SEH and many obfuscation
techniques adopted in packer.

1) The framework of BE-PUM
BE-PUM implements CFG reconstruction based on

concolic testing. Figure 3 shows the architecture of BE-PUM
including three components: symbolic execution, binary
emulation, and CFG storage. It computes a single step
disassembly by applying JakStab 0.8.3 [10] as a preprocessor.
An SMT Z3.4.4 is supported as a backend engine to generate a
test instance for concolic testing. The symbolic execution
picks up state from the frontier and extends in on-the-fly
manner.

2) Running Example

Figure 2. Running example of BE-PUM

 We illustrate the operation of BE-PUM with a small
example in Figure 2. At a first look, the execution follows the
looping path P = (start → 0 → 1 → 2 → 3 → 4 → 1).
However, the instruction at the location 3 overwrites the
opcode at L1 + 1 which modifies the opcode at 1 from EB 00
to EB 0A. The instruction “jmp L2” at 1 is modified to “jmp

L3”. JakStab and IDA Pro fail to handle this obfuscation
technique, whereas BE-PUM correctly generates
(0, “xor eax eax”) → (1, “jmp L2”) → (2, “mov eax, offset l1
+ 1”) → (3, “mov byte ptr [eax], 0Eh”) → (4, “jmp L1”) →
(1, “jmp L3”) → • • •

 Continue from the location 5, there is a system call
GetModuleHandleA at 9 and an indirect jump at 12. The API
GetModuleHandleA at 9 is invoked with parameter 0. BE-
PUM simulates its symbolic execution using Java Native
Access (JNA). The return value is stored in register eax. The
path formula of (start → 0 → 1 → 2 → 3 → 4 → 1 → 5 → 6
→ 8 → 9 → 10 → 11 → 12) is (ebx == 1000). For handling
the indirect jump at 12, BE-PUM adopts concolic testing by
setting the value (ebx = 1000) (generated by Z3 4.3), and finds
a new destination 14 (13 is dead node).

3) BE-PUM as a generic unpacker tool
Preliminary version of BE-PUM can handle some typical

obfuscation techniques of packers, e.g., indirect jump, self-
modification, overlapping instructions, and structured
exception handler (SEH). Inspired by [8], we have
implemented many counter solutions for obfuscation
techniques of packers which improves BE-PUM as a powerful
general unpacker. Since most of malwares work in user mode,
BEPUM just support user process level. It also supports
symbolic binary emulation which makes BE-PUM a very
effective de-obfuscation tool. We consider the SEH technique
adopted in packer PETITE.
404116 PUSH 4022E3
40411B PUSH DWORD PTR FS:[0]
404122 MOV DWORD PTR FS:[0] , ESP
 ……….
40421E MOV BYTE PTR DS:[EDI] , AL

At 00404122, fs:[0x0] is overwritten with the pointer to
malicious code (the value of esp). It then creates a fault
condition by ”mov” at 0040421E. Since the value of register
EDI is 0, the instruction at 0040421E overwrites the memory
address at 00000000, which is protected by Windows
operating system. This exception changes the control flow to
4022E3. BE-PUM can precisely trace this obfuscation
technique while other tools fail.

B. Packer

Packer targets on converting a binary file into another
executable. The new one preserves the original file’s
functionality but with a different content on the system.
Moreover, packer tries to compress targeted file for reducing
the memory. However, the notable feature of packer is to
protect the original file from being reversed, analyzed and
tampered with. It combines many obfuscation methods
including anti-debugging, anti-reverse engineering, and more
for defeating the anti-virus software. This feature is mainly
adopted in malware for protecting them from detection of anti-
virus software.

Packer supports many obfuscation techniques. We
categorize them into 6 groups as presented in details [8][9].

5https://www.virustotal.com

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

 Entry/code placing obfuscation (Code layout):
overlapping functions, overlapping blocks, and code
chunking.

 Self-modification code: overwriting and
packing/unpacking.

 Instruction obfuscation: Indirect jump.

 Anti-tracing: SEH (structural exception handling) and
Special API

 Arithmetic operation: Obfuscated constants and
checksumming.

 Anti-tampering: Checksumming, timing check, anti-
debugging, anti-rewriting, and hardware breakpoints.

 We assume that each packer P can be represented a vector
O of many obfuscation techniques O=(O1,..., Ok). Table 1
depicts the frequency of obfuscation techniques which we have
measured using our tool BE-PUM. However, in analyzing real-
world malware, the frequency of obfuscation technique is not
the same with the value in Table 1. The reason is that malware
can adopts these obfuscation techniques which cause noise in
the expected value. Hence, the approach of exact matching
produces the inaccurate results.

C. Probability Distribution

1) Power law
In analyzing malware, we have faced the problems of

measuring the relationship between various quantities. We
choose power law as a solution to develop measurement
functions for these problems. Power law [14] is a statistical
method which is widely used in many fields. In a specific
context, power law is a function between two quantities which
is proportional power. That is, a minor change in one quantity
might cause a huge effect on the other. Each power law
produces a different distribution on the quantities which can

have practical applications. One of the most famous
distributions is Pareto principle [13], well known as the 80:20
rules, which has a lot of practical applications in many fields,
e.g. social, scientific, geophysical, and actuarial. In computer
science field, Zipf's law [5] is the most famous applications of
power law. In the context of text processing, Zipf’s law states
that frequency of a word is inversely proportional to its rank as
a formula f ~ r-b, where b depends on specific problem.

Term frequency-inverse document frequency (��°���) is a
more specific application of power law and Zipf’s law. ��°���
measures the importance of a word to a document over a
collection of text documents or corpus. For example, given a
set of text documents D = {d1, d2…dn}, ��°��� helps to
determine which document is most relevant the query. In this
context, Zipf’s law states that a word that occurs in more
documents is less important in classifying documents over a
corpus. Based on Zipf’s law, various functions are proposed to
calculate ��°���. Among the most common uses, ��°��� is
defined as follow.

 Term frequency of a word t in a document d, tf(t, d), is
the number of time that t occurs in d.

 Inverse document frequency of a word t over a set of
text documents D

���(�, �) = ���
|�|

|{� ∈ �: � ∈ �}|
 (1)

where |D| is the number of documents, and |{� ∈ �: � ∈
�}|is the number of documents that term t occurs.

 ��°��� of a term t in document d over D is calculated
as

��°���(�, �, �) = ��(�, �) ∗ ���(�, �) (2)

Figure 4 presents the plate notation [15] of ��°���. Note
that, the observable states (occ and df) are presented by shaded

Figure 3. Framework of BE-PUM

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

circle and the computational states are depicted with the empty
circle. The arrows illustrate the relationship between states.
The W in the corner of the plate indicates that the variables
inside are repeated for each word. The D means that it is for
each document. occ state represents the number of occurrence
for each word in each document. From occ, we can calculate
the tf value (in tf state). For each word, we measure the df value
(in df state) and extract the idf value by applying the formula
(1). Combining the two value tf and idf with the formula (2),
we calculate the value of ��°���.

Original Zipf’s law measures the relationship between two
quantities in the same set of documents. In the following
sections, we propose an extended model of Zipf’s law to
calculate relationship between various document sets in two
particular applications as aforementioned.

Figure 4. Plate notation of ��°��� weight

Based on power law, the traditional ��°��� calculates the
value of idf on the whole set. However, in analyzing malware,
we cannot calculate the same way. For tacking this problem
we propose to separate the set of normal files and targeted
files for strongly marking the importance of instructions or
obfuscation techniques which rarely occurs in normal files.

III. THE APPROACH OF APPLYING PROBABILITY

DISTRIBUTION ON EXTRACTING MALWARE

FEATURES

In this section we introduce our methods for classifying
malware and identifying packer based on the power law.

A. Preliminary

We separate the two sets, the set of malware and the set of
normal program. Note that, based on BE-PUM, we can
construct the control flow graph of program and measure the
frequency of instructions and obfuscation techniques in each
program. From the results of BE-PUM, we plan to extract the
typical features which happen in malware and do not occur in
normal file. Hence, we cannot combine the two sets as
described in the calculation of ��°���. We assume that the
more a feature occurs in malware, the more important it is.
However, the more it happens in normal program, the less
important it is.

B. Method for packer detection

1) The ���°��� weight

Given a packer T which uses a set of obfuscation
techniques O = {o1, o2 …, on}. We denote P= {P1, P2….,Pn} a
list of malwares which are packed by T and a set of normal file
NP = {NP1, NP2, … ,NPm}. For an assembly b, we calculate
vector Vb, and the measure relationship between two vectors to
identify if b is packed by T.

Based on Zipf’s law, we measure a relationship between each
obfuscation technique o and assembly b, ���°��� (o,b), which
calculated as follow

 Raw frequency of an obfuscation technique o in an
assembly b, f(o,b), is the number of time o appears in
b.

 Obfuscation technique frequency of an obfuscation
technique o in an assembly b

���(�, �) =
�(�, �)

�(����, �)
 (3)

Where f(omax,b) is the maximum value of f(o,b) over
all obfuscation technique

 Inverse packer frequency of an obfuscation technique
o

���(�) =
|��|

0.001 ∗ |��| + ���(�, ��)
 (4)

Where occ(o, NP) is the number of program p in NP
contains o. The factor 0.001*|NP| is an adjustment to
avoid division-by-zero. Note that we calculate the
value of ipf in NP (normal file) set for pointing out
the importance of obfuscation technique. The more
an obfuscation techniques occurs in normal file, the
lest importance it is.

 otf°ipf of an obfuscation technique o in an assembly b
is calculated

���°��� = ���(�, �) ∗ ���(�)(5)

Figure 5. Plate notation of ���°��� weight

 Figure 5 presents the plate notation of ���°��� weight.
Note that we separate in two sets as described in the corner of
plate, P for packed malwares and NP for normal files. For
each obfuscation technique O, we measure the otf value for P
set by applying the formula (3). ipf is calculated for NP set by

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

applying the formula (4). By applying (5), we extract the
���°��� for O.

 As the formula implies, if o occurs more in b while o
occurs less in NP, o is more important in classifying if b is
packed by T. With calculated ���°��� for all obfuscation
techniques, we propose a method to identify packer as follow.

 Generate vector VT

VT = �
∑ ���°���(��,��)�

�

�
,

∑ ���°���(��,��)�
�

�
… ,

∑ ���°���(��,��)�
�

�
�

 Generate vector Fb

Vb =
{���°���(��, �), ���°���(��, �) … , ���°���(��, �)}

 Calculate Euclidean distance between these two
vectors VF and Vb. If the distance below a threshold ε,
b is packed by T. From the empirical study, we
choose ε = 0.001.

2) Running example
Let see an example of 6 files and 14 obfuscation techniques,

where P = {Demo1, Demo2, Demo3} are packed by packer
UPX, NP = {Demo4, Demo5} are normal files, and unknown
file F. The frequency of obfuscation techniques on these files is
listed in Table 2. Consider Indirect Jump (IJ) technique,
���°���(��, ����1) is calculated as follow

���(��, ����1) =
�(��, ����1)

�(����, ����1)
=

4

25
= 0.16

���(��) =
|��|

0.001 ∗ |��| + ���(��, ��)
=

2

0.001 ∗ 2 + 1
= 1.996

So we have ���°���(��, ����1) = 0.16 ∗ 1.996 = 0.31936

Similarity, ���°��� of all obfuscation techniques and each
files are listed in Table 3.

So we can calculate vectors VUPX, and VF as follow
VUPX={0,0.339869,0,0.313725,1.882352,0.078431,0,0,0,0,0,0,
0.078431,0}

VF={0,0.338859,0,0.302725,1.872302,0.063431,0.03,0,0,0,0,0
,0.075451,0}

Since d(VUPX, VF) = 0.633527 > ε, then F is not packed by
UPX

C. Method for malware classification

1) The ��°��� weight

 Based on the famous Zipf’s law, we derive a new frequency
based weight to identify instruction relevance in malware
family, known as instruction frequency-inverse malware
frequency, ��°���. Given a set V of infected files and a
normal binaries set NV, the ��°��� weight of a certain
instruction I is defined as follows.

 Frequency of an instruction I in a program set P

��(�, �) =
�(�, �)

�(����, �)
 (6)

where f(I,P) is total number of times I occurs in P and Imax is
the instruction which has largest frequency in P.

 Inverse-packer frequency of an instruction

���(�) =
|��|

0.001 ∗ |�| + ���(�, �)
 (7)

where occ is the number of files in V that I occurs.

Then

��°���(�) = ��(�, �) ∗ ���(�) (8)

 In the ipf formula, the factor 0.001 ∗ |�| is an adjustment to
avoid division-by-zero. Note that, for each malware family V,
instructions I with high value of ��°��� shows a strong
relationship with the V they appear in, It implies that if that
instruction were to appear in a targeted file F, then F can
belong to V.

Figure 6. Plate notation of ��°��� weight

 Figure 6 illustrates the plate notation of ��°��� weight.
Note that we also separate in two sets as described in the
corner of plate, V for viruses and NV for normal files. For each
instruction I, we measure the if value for V set by applying the
formula (6). ipf is calculated for NV set by applying the
formula (7). By applying (8), we extract the ��°��� for O.

TABLE 2. Frequency of obfuscation techniques in running examples

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

IV. CASE STUDY: ANALYSIS OF EMDIVI VIRUS

 EMDIVI is an APT malware which targeted in many
organizations in Japan e.g. banks, government agency,
university. It adopts many complex obfuscation techniques to
evade the signature matching detection in anti-virus software.
Our tool BE-PUM can analyze this malware and extract the
frequency of obfuscation techniques. The details are presented
in the Table 4. Another notorious feature is that BE-PUM can
also extract the address of C&C server (Command and
Control) which this malware connects to transfer information.
The hostname is “www.n-fit-sub.com”. To the depth of our
knowledge, BE-PUM is the first model generation tool which
achieves this result.

Obfuscation Technique Frequency

AntiDebugging 0

Checksumming 4

CodeChunking 0

IndirectJump 4

ObfuscatedConst 23

Overlapping Block 1

Overlapping Function 0

Overwriting 0

Packing/Unpacking 0

SEH 0

Stolen Byte 0

Timing Check 0

Special API 1

Hardware BPX 0

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment Setup

We perform the experiments of packer detection on
Windows XP with AMD Athlon II X4 635, 2.9 GHz and 8GB
memory. The samples are 4194 real-world malwares collected
from VirusTotal. Among them 1258 of these samples are
downloaders, 2120 are worms, and the rest are trojans. Since
the lack of time and resource, we cannot perform the
experiment of malware classification.

B. Experiment on real-world malware

Among 4194 malware, our approach succeeds on 3765
malware. The other files are unknown. Figure 7 presents the
results between our approach using BE-PUM with the method
of binary signature using CFF Explorer. In figure 7, the vertical
axis shows the number of malware identified for each methods.
Clearly, our approach shows the better results. In some cases,
our approach can detect the unknown packer. For example,
consider malware 034f9d2dc5627296141bb7d0a11032b1e8c-
7e47f266ada4a1da7f8dad05668b. Its binary code is “60 BE 12
E0 95 00 8D BE 00 30 AA FF C7” which is disassembly as
follows.

00A31B20 > 60 PUSHAD
00A31B21 . BE 12E09500 MOV ESI,0034f9d2.0095E120
00A31B26 . 8DBE 0030AAFF LEA EDI,DWORD PTR DS:[ESI+FFAA3000]
00A31B2C . C787 D0566200 >MOV DWORD PTR DS:[EDI+6256D0], 2A11

Our approach detects it as UPX while CFF Explorer fails.
The reason is that the signature of UPX is “60 BE ?? ?? ?? 00
8D BE ?? ?? ?? FF 57”. The two binary codes differ at the
final byte, C7 vs 57.

V. CONCLUSIONS

This paper proposes a new approach of using probability
distribution for tackling two goals including identifying
malware and detecting packer. For the first goal, we derive a
new weight ��°��� for extracting the most important
instructions of each malware class. For the second one, we
measures the frequency of obfuscation techniques and extracts
the obfuscation technique relevance in packer based on the new
weight ���°���. Based on the vector of ���°��� , we can
calculate the distance for identifying packers. Experiments and
observation confirm that BE-PUM correctly handles
obfuscation techniques and detect packer on 4194 real-world
malware. In the future work, we will increase the number of
packer for better results. Another future work is that we will
perform the experiments on malware classification using the
new weight ��°���.

REFERENCES

[1] BitDefender, “Anti-virus technology whitepaper”, Technical report,
Washington, DC. USA, 2007

[2] E. Filiol, Malware pattern scanning schemes secure
against black-box analysis,” Journal in Computer Virology, vol. 2, pp.
35–50, 2006.

[3] E. Filiol, “Metamorphism, formal grammars and undecidable
code mutation,” Int. J. Comput. Sci. 2, , 2007, pp. 70–75.

[4] M. Morgenstern and A. Marx. “Runtime packer testing experiences”. In
Proceedings of the 2nd Computer Antivirus Research Organization
Workshop, Hoofddorp, Netherlands, 2008, 288-305.

[5] G. K. Zipf, The Psycho-Biology of Language. “An Introduction to
Dynamic Philology”. Boston, USA: Houghton-Mifflin Company, 1935.

[6] M. H. Nguyen, T. B. Nguyen, T. T. Quan, and M. Ogawa. “A hybrid
approach for control flow graph construction from binary code”. In
IEEE APSEC, pp.159-164, 2013

[7] M. H. Nguyen, M. Ogawa, and T. T. Quan and. “Obfuscation code
localization based on CFG generation of malware”. In FPS, pp.229-247,
2015. LNCS 9482G.

[8] Nguyen Minh Hai and Quan Thanh Tho. “An Experimental Study on
Identifying Obfuscation Techniques in Packer”, 5th World Conference
on Applied Sciences, Engineering & Technology, 02-04 June 2016,
HCMUT, Vietnam, ISBN 978-81-930222-2-1.

[9] K.A. Roundy and B.P. Miller. “Binary-code obfuscations in prevalent
packer tools”. In ACM Comput. Surv, 46, pages 4:1–4:32, 2013

[10] J.Kinder, F.Zuleger, and H.Veith, “An abstract interpretation-based
framework for control flow reconstruction from binaries,” in VMCAI
2009, pp. 214–228, 2009. 214–228.

[11] T.Izumida, K.Futatsugi, and A.Mori. “A generic binary analysis method
for malware”. In International Workshop on Security, pages 199–216,
2010. LNCS 6434.

[12] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent.
“The BINCOA framework for binary code analysis”. In CAV, pages
165–170, 2011. LNCS 6806.

[13] 14. Rosen, K. T.; Resnick, M., “The size distribution of cities: an
examination of the Pareto law and primacy”, Journal of Urban
Economics 8 (2): 165–186.

TABLE 4. Frequency of obfuscation techniques in EMDIVI

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

[14] Manfred Schroeder, Fractals, and Chaos, “Power Laws: Minutes from an
Infinite Paradise”. W.H. Freeman and Company, New York, 1991

[15] Buntine, Wray L. "Operations for Learning with Graphical Models".
Journal of Artificial Intelligence Research (2), 2008, 159–225.

[16] F. Song and T. Touili, “Pushdown model checking for malware
detection,” in 18th Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pp. 110–125, 2012. LNCS 7214.

[17] 7. F. Song and T. Touili, “LTL model-checking for malware detection,”
in 19th Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp. 416– 431, 2013. LNCS 7795

TABLE 3. ���°��� value of obfuscation techniques in running examples

Figure 7. Experimental results

Nguyen Minh Hai, Ha Minh Ngoc, Nguyen Thien Binh, and Quan Thanh Tho

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

