
Analysis of the impact of file formats for open

data analytics efficiency: a case study with R
J.J. Cuadrado

Universidad de Alcalá, Spain

Abstract: By sharing their documents many organizations

of boast of trans-parency that does not have. Why?

Because the documents are pub-lished in for in which the

data are if not impossible very difficult to analyzed by the

main existing exploratory data analysis, eda, software. For

reason it is very important not only to share the

documentation but to share it in a file format that allows

the user to analyze them easily. This paper presents the

results of a research conducted to help to solve this

problem and it has been developed to establish which file

formats must be used to facilitate the use and analysis of

data shared in open data sets when its used one of the main

eda software like is R.

1. Introduction

Nowadays, the transparency, especially in public

organisms, is a trending and very important topic [4].

One of the basic parameters which are used to determine

the degree of transparency of an institution, is the

quantity of data which is published and available for

users. But this factor of trans-parency measurement is

wrong, because the quantity of published data is not the

same as the manageability and ease of obtaining

information from this data [8].

When we are talking about manageability [2], it includes

the type of the data we received. The are a lot of cases

that the organizations send data to analysts, it would be

in some formats which the software used for the analyst

can work with it. For example, some organizations send

data in pdf or similar formats that can be read but it can

be loaded into analysis software [5]. It is important to

know the estimate size of the files that we want to

analyze too. In most of the cases, with big organization,

we have to work with files which contains millions of

rows, so we need to know the actual algorithms for data

mining [1].

In a software perspective, it is very important to know

which software we will use, because it will determine

which formats we need to request to the organization [6].

The are a lot of software that can be used for this work,

like R, Python or Weka. We choose R because it is very

M.D. Monz´on

Universidad de Alcalá, Spain

strong and it has a lot of documentation in books or

Internet. With R, we can run algorithms for association,

clustering or classification, and then we can see the

results in a wide variety of plots [7].

For this work, we will use a analysis tool called

RStudio which work with R, favoring interactivity

with the use of data mining algorithms, visualiza-tion

of results or load data importing external packages [3].

The main problem that we will face it is that, to obtain

the data after a process of experimentation, we will

working with non-deterministic algo-rithm. This could

be a problem when we try to extract the data load time

of a single format. The results are not the same when

we load the data, it depends on the machine, the

operative system or running process. There-fore,

we need to estimate this measures taking to account

measures like the mean or the standard deviation.

2. File formats

2.1 Text file formats

Any additional packages are not needed for load data in

files with these formats.

2.1.1 (.txt) text

• Method: read.table() Example: d =

read.table(”data.txt”). We refer to d as to the variable

which contains all the data related to the file.

• Attributes: read.table(data, sep= separator).

The attribute separator is the character used to split the

columns inside the file. It doesn’t have to be a comma or

a dot, but a single character. Example: d =

read.table(”data.txt”, sep=”\”).

• Warnings: File Format: The header has to

contain the name of the columns, with a single tab

between them, plus a tab at the beginning of the file.

2.1.2 (.csv) comma separated values

• Method: read.csv().

GSTF Journal on Computing (JOC)
DOI: 10.5176/2251-3043_5.1.351
ISSN:2251 - 3043 ; Volume 5, Issue 1; 2016 pp. 40-44
© The Author(s) 2016. This article is published with open access by the GSTF.

40 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

Example: d = read.csv(”data.csv”). We refer to d as to

the variable which contains all the data related to the file.

• Warnings: File Format: The columns are

splitted by commas (or semi-colons) and the rows are

splitted by a newline. It can be used another separator, if

it is a single character.

2.2 File formats for data analysis programs outputs

Additional packages1 are needed for load data from files

with these formats.

2.2.1 (.xls o .xlsx), Microsoft Excel application

There are different packages which allows to load data

from Excel2:

Package gdata3:

• Method: read.xls()

Example: d = read.xls(”data.xls”). We refer to d as to the

variable which contains all the data related to the file.

• Warnings package gdata: It is a package built

over Perl and it must have, at least, the same version or

higher to the 5.10.0 version. It has a GPL-2 license. It

contains another tools for combining objects or vector

operations too.

Package XLConnect4.

 Method: File load: loadWorkbook();

Worksheet load: readWork-sheet()

Example: File load: d = loadWorkbook(”ejemplo.xls”).

We refer to d as to the variable which contains all the

data related to the file. Work-sheet load: d1 =

readWorksheet(d, sheet = ”Hoja1”). It is called d1 to the

variable which contains all the data related to the file.

 Warnings package XLConnect: Is a package

built over Java, so it must be installed on a

machine who contains Java. If the operative

system is 64-bit version, Java version must be

a 64-bit version too. Additionally, it needs the

XLConnectJars package, but it is installed

when the load of the XLConnect package is

running.

1There are di_erent methods for import additional packages, the

most basic method is
library(). For use it: library("package name")

2There are sorted by name.

3The instruction is: library(gdata)
4The instruction is: library(XLConnect).

2.2.2 (.sav), aplicaci´on IBM SPSS

Package foreign5.

• Method: read.spss()

Example: read.spss(”datos.sav”). We refer to d as to the

variable which contains all the data related to the file.

• Warnings Package foreign: The file will be

downloaded as a temporary file and then treated in the

case of the file path has a URL format. Some label

values can be added as a factors. When it is not desired,

it is necessary to modify the max.value.labels attribute,

specifying which variables with different values don’t

have to be added as a factors.

2.2.3 (.arff) atribute-relation file format, WEKA

application

Package foreign.

• Method: read.arff()

Example: read.arff(”data.arff”). We refer to d as to the

variable which contains all the data related to the file.

• Warnings package foreign: File format:

– Header: It is necessary to declare the entity with the

word @RE-LATION relationName, where

relationName is the relation name. The next step is the

declaration of the attributes with @AT-TRIBUTE

attributeName dataType, where attributeName is the

attribute name, and dataType it is constituted by a set of

values.6.

– Data section: Specify values, splitted by commas, for

each column declared in the header, differing between

rows by using newlines.

2.3 File formats for web programs

Additional packages7 are needed for load data from this

data sources.

2.3.1 Twitter

Package twitteR8 9.

5The instruction is: library(foreign).
6The possible values are NUMERIC, STRING, Date <Format>or a

nominal speciation.

J.J. Cuadrado and M.D. Monz´on

41 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

• Get user timeline: timeline =

userTimeline(‘user’,n), where user is the name of the

user and n is the number of tweets to receive10.

• Get tweets searching a string: tweetSearched =

searchTwitter(”string”, n), where string contains the

string that we want to search and n is the number of

tweets to receive.

Warnings package twitteR:

Authentication: The first step is to create a Twitter app11.

Then, you have to obtain the public and private keys and

tokens. For the authentication you have to run:

setup twitter oauth(consumer key, consumer secret,

access token, access secret)12.

2.3.2 (.json), javascript object notation The package

jsonline is needed to load JSON data.

Instructions

• Load the package: library(jsonlite)

• Load the data: d = fromJSON(”data.json”). We

refer to d as to the variable which contains all the data

related to the file.

Warnings

File format: It must have the same semi-structured

format as JSON files.

3 Comparative analysis of file format

suitability for different non-functional requirements

of data analytics with R

When a comparison is made between the different file

formats, it is necessary to determine which

measurements we want to compare. In this work, it has

been decided to compare the following points:

7There are dierent methods for import additional packages, the most
basic method is

library(). For use it: library("package name")

8Twitter is one of the most known social networks. It consists on a
microblogging

where the users write text messages with up to 140 characters, so that

the post can be
viewed by other users

9Instalation and load package: install.packages("twitteR"). Then, it is

necessary to
run: library(twitteR)

10Max value of n is 3200.

11For this, go to https://apps.twitter.com.

12Keys and tokens must be between double quotes.

• Load time of the file into R.

• File size.

• Output format after loading.

• Necessary conversion according to the type of

the analysis.

In the following table, it is going to make a comparison

between the chosen file formats, showing the size of the

data file, depending on the number of rows that will

contain that file1314.

Rows Text Csv Delimited Arff JSON

500 12.17 10.33 10.33 10.55 69.82

1000 24.38 20.58 20.58 20.80 139.64

10000 252.90 205.15 205.15 205.37 1396.48

100000 2625.94 2050.86 2050.86 2051.07 13964.84

1000000 27235.32 20507.89 20507.89 20508.11 13648.43

Table 1: Comparison between ï¬•le formats depending on the number

of rows and ï¬•le size (KB).

Note that a tabular text format is always heavier than

Csv, delimited or arï¬€ ï¬•les. The reason is that text

ï¬•les split the columns with a tab, while csv, delimited

and arï¬€ ï¬•les splits the data with a single character.

JSON ï¬•les are the heaviest files because it needs to

declare the name of the columns for each row.

In the plot 1 it is shown, with a more visual form, the

comparison be-tween the different file sizes, in a case of

files which contains a million of rows. The difference

between JSON files and the others is clearly big, while

between the other file formats can not be considered

significant.

Figure 1: Comparison between sizes and file formats with 1000000

rows.

Now, we proceed to compare the same file formats, but with a file

load time perspective. The results of the comparison are shown in the

table 2.

J.J. Cuadrado and M.D. Monz´on

42 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

13The number of columns is always 10. Each column contains the

same single value: 1.
14Delimited format _le consists in a similar format as the Csv but the

separator is a n.

Rows Text Csv

Delimit

ed Arff JSON

500 15.06 16.01 14.82 22.32 36.51

1000 20.29 23.85 21.62 30.57 52.65

10000 86.23 79.85 84.90 95.44 334.81

10000

0

638.9

6

659.0

9 603.68

651.1

6

3327.5

1

10000

00

5953.

18

4993.

29 4809.29

5463.

37

36601.

17

Table 2: Comparison between file formats according to the number of

rows and file load time (ms).

In the plot 2 it is shown the evolution of the file load

times according to the number of rows containing each

file. JSON require more time to be loaded into R. It

could be said that file load times are directly related to

the file size, but it is not true in all of the cases. For

example, Arff files are lighter than text format files, but

they need more time to be loaded in files which contains

less than a million of rows.

Figure 2: Comparison between sizes and file load times from 0 to
1000000 rows.

The last points to compare are the output format after

loading the data, and then, show if it is necessary a

conversion for doing some types of anal-ysis. This types

of analysis cover association (with the A priori

algorithm), supervised classification (using RPart),

unsupervised classification/cluster-ing (using KNN

algorithm) and finally linear regression (using the

method lm()). The output formats are obtained from load

methods described before in the first chapters of this

work.

Text Csv
Delimit
ed Arff JSON

Output
Format

Data.fr
ame

Data.fr
ame

Data.fr
ame

Data.fr
ame

Data.fr
ame

Associati

on (A

priori) TRUE TRUE TRUE TRUE TRUE

Supervis

ed

classifica
tion

(RPart) TRUE TRUE TRUE TRUE TRUE

Clusterin
g (KNN) TRUE TRUE TRUE TRUE TRUE

Linear
regressio

n (lm) TRUE TRUE TRUE TRUE TRUE

Table 3: Comparison between file formats according to the output

format and the analysis type (direct).

All of the methods return the same output format:

Data.frame. Because of that, all file formats have the

same treatment, ie, they can be used directly for

association, supervised classification, clustering and

linear regression. It is true that, for these algorithms, it

is recommended to cast the output format to another

format. For example, cast data.frame to matrix for A

priori algorithm, but both can be used for it.

4 Conclusions

After doing this work, we could say that data which has

been imported in different formats is not the same, in

terms of files size or data load time. The file format

which will be requested to the organizations is very

crucial because it can suppose a higher or lower

performance, especially when you are talking about files

with millions of rows or columns. Therefore, it is very

important to be sure about what type of analysis you will

want to do and the different file formats you have,

because there are cases which are better in order to

transform some file formats to other to obtain better

performances.

References

[1] Wei Fan and Albert Bifet. Mining big data: current status,
and forecastto the future, 2013.
[2] Gerard George, Martine R Haas, and Alex Pentland. Big
data and management, 2014.
[3] Ross Ihaka and Robert Gentleman. R: a language for data
analysis and graphics. Journal of computational and graphical
statistics, 5(3):299{314, 1996.
[4] Bates J. The strategic importance of information policy
for the con- temporary neoliberal state: The case of open government
data in the united kingdom, government information quarterly,
volume 31, issue 3, july 2014, pages 388{395, elsevier.
[5] Marijn Janssen, Yannis Charalabidis, and Anneke
Zuiderwijk. Bene_ts, adoption barriers and myths of open data and
open government, 2012.

J.J. Cuadrado and M.D. Monz´on

43 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

[6] HEL Lischer and Laurent Exco_er. Pgdspider: an automated

data conversion tool for connecting population genetics and

genomics programs, 2012.

[7] Ian H Witten and Eibe Frank. Data mining: Practical machine

learning tools and techniques, 2005.

[8] Anneke Zuiderwijk and Marijn Janssen. Open data policies,

their implementation and impact: A framework for comparison,

2014.

J.J. Cuadrado and M.D. Monz´on

44 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

