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Abstract—Gasoline and diesel fuel is the lifeblood that keeps our 

daily life moving forward.  Inefficient operation of fuel supply 

leads to unsatisfactory service, time consuming, as well as low 

economic benefits. Exploring the optimal timing for gas stations to 

replenish gasoline and diesel is of importance. We propose to apply 

infinite-horizon Markov Decision Processes (MDPs) to this 

dynamic problem. Compared with traditional methods for 

determining the optimal timing of replenishment, such as IB, 

EOQ, EB, etc., MDPs are better in accurately modeling the 

situation which needs sequential decision making under 

uncertainties. For the MDPs modelling gas station replenishment 

problem, the rewards for any actions taken in the states (the 

remaining gasoline and diesel inventory status in the oil tank of the 

gas station) is to keep the duration for stockout and the tanker 

trucks’ waiting time as low as possible. The optimal policy is to 

maximize the rewards. A real world case study was presented and 

a revised infinite-horizon MDPs model was constructed to 

optimize the time for replenishment. Managerial insights guiding 

the actions gas stations should take to optimize their 

replenishment strategies are gained.  

 
Index Terms—MDPs, optimization, petroleum industry 

 

I. INTRODUCTION 

asoline and diesel, the main finished products of the 

downstream petroleum supply chain, are the lifeblood of 

people’s daily life and businesses. The downstream petroleum 

supply chain refers to crude oil refining, marketing, and 

distribution of finished petroleum products. Refining, the 

remanufacturing process in downstream petroleum supply 

chain, is the starting point of producing finished petroleum 

products. There are four transportation ways- pipelines, 

railway, road, and water transportation to deliver gasoline and 

diesel to end users. The activities involved in the distribution 

process can be classified into two stages by end points. Refinery 

to oil depots (distribution center) is defined as the first 

(primary) distribution stage, while oil depots to various gas 

stations are defined as the second distribution stage (See Fig. 

1). Gas stations, the main components of the second distribution 

stage, directly relate to customer needs. On one hand, it is better 

to keep the oil tanks of gas stations filled with enough gasoline 

and diesel to supply; however, it may increase the inventory 

costs as well as the other relevant operation costs  

of gas stations, such as the transportation costs, depreciation of  
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tanker trucks, and so forth. On the other hand, if gasoline and 

diesel in the oil tanks are kept in a low level, the risk of stockout 

increases. Therefore, it is necessary to explore the optimal 

timing for gas stations to replenish. 
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Fig. 1.  Downstream petroleum industry 

 

There are a number of literatures exploring the optimal 

replenishment strategies, which have been applied in various 

industries. Gallego and Ozer [1] provided the optimal 

replenishment policies for general multi-echelon inventory 

problems with incorporating advance demand information into 

the model. They proved that myopic policies are easy to be 

determined when demands and involved costs are stationary. 

Wang and Wu [2] proposed a re-hybrid policy based on hybrid 

based policy I and hybrid based policy II, which are developed 

from installation-based (IB) and echelon-based (EB). Re-

hybrid policy was effective in reducing costs, especially in the 

system consisting of one distribution center and many retailers 

whose demands are independent. Chen, Federgruen, and Zheng 

[3] developed a set of efficient algorithms to help make optimal 

pricing and replenishment decisions for a two-echelon 

distribution system with deterministic demands. Some other 

articles [4]–[6] also incorporate the time value of money when 

deciding the optimal replenishment and pricing policy for 
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deteriorating items.    

Though the research articles on exploring general optimal 

replenishment strategies as well as their applications are 

plentiful, there have been very few literatures exploring the 

optimal replenishment strategies for gas stations with 

uncertainties so far. Tang and Li [7] discussed the optimal 

replenishment policy of refined oil through demand forecasting 

and effective usage of tanker trucks under VMI mode. Wang 

and Cao [8] applied EOQ to determine the optimal 

replenishment quantity for gas stations so as to reduce inventory 

cost.  Other relevant articles [9]–[11] regard gas stations as 

nodes in the downstream petroleum supply chain, which need 

to strengthen safety and information construction.  

The objective of this research is to explore the optimal timing 

for gas stations to replenish considering the changing customer 

demands. A revised MDPs model with infinite time horizon 

was built to describe the dynamic problem and explore the 

decision under uncertainties. The remainder of this research is 

organized as follows. A detailed literature review was made on 

the theory basis and wide applications of MDPs. Then we 

applied MDPs to one real world case study about China’s 

petroleum industry. Combined with the practical situation and 

characteristics, we improved the MDPs model to make it 

applicable in petroleum industry. The research was concluded 

with a discussion on the managerial implications of the model 

application, and future work was also pointed out. 

 

II. GENERAL MARKOV DECISION PROCESSES (MDPS) 

MDPs are mostly applied in a situation or system which 

consists of a series of discrete event stochastic processes and 

can be controlled by sequential decisions [12]–[14]. Markov 

decision processes turns out pretty useful in optimizing 

problems and has been widely used in various research areas, 

such as computer science, robotics, economics, and automated 

control [15], but not common in petroleum industry. Sandikci 

[16] pointed out that MDPs include several necessary 

components, which are described below (see Table 1).  
 

TABLE 1 

NECESSARY COMPONENTS OF MARKOV DECISION PROCESSES (MDPS) 

Components Description 

State space (S) 
Set of mutually exclusive  that can describe all the 

possible conditions collectively 

Action space (A) Set of different choices (decisions) at each state 

Transition 
probability (p) 

Probability of transferring one state (i) to another 
state (j), i,j ϵ S 

Reward (r) Value resulting from the actions taken at any state 

Decision rule (d) The decision made for a specific state 
Decision epoch (t) The time points when the decisions are made 

Policy (π) The sequential decisions made for a time range 

 

At any given time point  𝑡 , there is always one state 𝑖  𝜖  𝑆 

corresponding to one decision process. The decision maker may 

choose any action 𝑎 from a set of 𝐴(𝑖) that is available at state 𝑖, 
which leads the current state 𝑖   to move to a new state j 

randomly and the accompanying reward 𝑟𝑡(𝑖, 𝑎) come along. 

Transition probability 𝑝(𝑗|𝑖, 𝑎) represents the probabilities of 

moving from state 𝑖 to 𝑗 if action 𝑎 was taken at state 𝑖. At each 

step of transition, a certain rewards will be received. The 

objective of MDPs is to explore an optimal policy which 

determines a sequence of actions so as to maximize the rewards 

obtained. However, future rewards are discounted along with 

the time at a constant discounting rate [17]. We use 𝑟𝑡
∗(𝑖𝑡) to 

represent the maximized expected rewards when the current 

state is 𝑖 at time 𝑡. Then the future time horizon is (𝑇 –  𝑡); the 

expected rewards and the optimal policy will be determined by 

solving the following recursive Bellman equations [18].   

 

𝑟𝑡
∗(𝑖𝑡) 

 

= 

{
 
 

 
 

𝑟𝑡(𝑖𝑡),   𝑖𝑡  ∈   S ; 𝑡 = 𝑇

max
{ 𝑟𝑡(𝑖𝑡 , 𝑎) + (1 − 𝜃)∑𝑝𝑡(𝑗|𝑖𝑡 , 𝑎)

𝑗 𝜖 𝑆

𝑟𝑡+1
∗ (𝑗)}

𝑡 = 1, 2, … , 𝑇 − 1

         (1) 

 

Notation:  

𝑟𝑡
∗(𝑖𝑡): Maximized rewards when the state at time 𝑡 is 𝑖 
𝑟𝑡(𝑖𝑡):  Rewards when the state at time 𝑡 is 𝑖 
T: Total time horizon 

𝑟𝑡(𝑖𝑡 , 𝑎): The immediate reward for taking action 𝑎 when the 

state is 𝑖 at time 𝑡 
𝜃: Discounting rate used to measure the future rewards, and the 

value range for 𝜃 is: 0 ≤ 𝜃 ≤ 1 

𝑝𝑡(𝑗|𝑖𝑡 , 𝑎):  Probability transition from state 𝑖  to 𝑗  by taking 

action 𝑎 at time 𝑡 
𝑟𝑡+1
∗ (𝑗): Maximized rewards when the state at time 𝑡 + 1 is 𝑗 

 

The equation to maximize total expected rewards at time 𝑡 is 

divided into two situations. For any time points along the time 

horizon except the terminal point, the maximized expected 

reward function equals to the summation of the rewards at 

current time and the discounted future rewards until the time 

point second to the terminal point (𝑡 = 1, 2, … , 𝑇 − 1). When it 

comes to the reward at terminal time point (𝑇), the maximized 

reward of the system is comparatively easy to calculate, simply 

the normal reward to be received at that time.  

A. MDPs with Finite Time Horizon 

MDPs with finite time horizon was quite useful in modeling 

the problem or system that can be terminated at a specific time 

point. To maximize the rewards, we can solve the finite-horizon 

MDPs with Equation (1) directly to decide which state to visit 

and with what probability. There are extensive applications, 

such as a finite-year service planning in a service system. 

Bauerle and Rieder [20] mentioned the stochastic linear-

quadratic control problems application, in which the optimal 

decision rule is a linear function of the states, and thus easy to 

compute. They also suggest some application areas, such as 

logistics, healthcare, energy systems, and so forth.      

B. MDPs with Infinite Time Horizon 

MDPs with infinite time horizon was appropriate in 

modeling the problem or system that never has a terminal point 

along the time horizon. The condition that a finite-horizon 

MDPs model with various states and long enough time horizon 

can be approximated to an infinite-horizon MDPs model. 
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Compared with finite-horizon MDPs, addition convergence 

assumptions have to be satisfied in infinite-horizon MDPs 

model [18]. For MDPs with infinite time horizon, we usually 

assume it is stationary and no not need the time parameter (𝑡), 
which makes the value function be the greatest r-sub harmonic 

function or the unique value for optimal rewards. According to 

Alagoz, et al [19], the equation used to find the maximized 

rewards (optimal policy) for state 𝑖 is as follows: 

 

R(i) = max {𝑟(𝑖, 𝑎) + (1 − 𝜃)∑ 𝑝(𝑗|𝑖, 𝑎)𝑗 𝜖 𝑆 𝑅(𝑗)}               

(2) 

𝐴 = ⋃ 𝐴(𝑖)𝑁
𝑖=1 ,    𝑖 ∈ S                                                             

(3) 

∑ 𝑝(𝑗|𝑖, 𝑎)𝑗 𝜖 𝑆 = 1,       𝑎 ∈ 𝐴(𝑖),  𝑖 ∈ S                                   

(4) 

 

In the above equations, R(i) and R(j) represent the maximized 

rewards at state 𝑖 and 𝑗 separately. A(𝑖) represent the available 

action set for state 𝑖  ϵ S. 𝑝(𝑗|𝑖, 𝑎)  represent the transition 

probability from state 𝑖  to 𝑗  by taking action  𝑎 ∈ 𝐴(𝑖) . 

Equation (2) explains that the maximized rewards for MDPs 

with infinite time horizon. Equation (3) signifies that the action 

space A is the union of the available action sets 𝐴(𝑖) for all of 

the states within the system. Since infinite-horizon MDPs can 

be assumed to be stationary, Equation (4) explains that all of the 

involved stationary transition probabilities are summed to be 

one. No time concept 𝑡 is necessary in infinite-horizon MDPs. 

 

III. REVISED MARKOV DECISION PROCESSES (MDPS) IN 

PETROLEUM INDUSTRY 

The petroleum supply chain sometimes operates with high 

costs, low efficiency, or even stops due to the frequent 

replenishment or supply rupture of petroleum products. Most of 

the time, the problem occurs at the downstream petroleum 

supply chain, where gas stations need to get gasoline and diesel 

from distribution center to supply customers. In this part, we 

apply a revised MDPs model to solve the existing petroleum 

problem, namely providing the optimal timing policy for gas 

stations to reorder gasoline and diesel to guarantee enough 

supply while keeping the inventory as low as possible.   

A. Revised MDPs Model in Petroleum Industry 

We construct a revised MDPs model in which there is a 

distribution center which is responsible for supplying gasoline 

and diesel to a bunch of gas stations. Since gasoline is 

consumed much faster than diesel, we focus on the optimal 

timing determination of gasoline replenishment in this research. 

Uncertain customer demands lead to a fluctuant consuming rate 

of the gasoline stored at gas stations for any time period. So this 

is a dynamic problem with stochastic processes. One noticed 

characteristic is that the time and quantity of gasoline needed at 

time t only has something to do with the status of the remaining 

gasoline in the oil tank of gas stations at time  (t − 1 ) but 

nothing to do with the states prior to time  (t − 1 ). So the 

stochastic process is also a typical Markov chain. We use an 

advised MDPs model, which is built on the properties of 

Markov chain, to determine the optimal timing of gas station 

replenishments when the gasoline from distribution center is 

always available to the decision maker. We seek a policy 

describing the remaining gasoline status in which immediate 

replenishment is the optimal strategy and those where waiting 

until next time point is the optimal strategy. The details of the 

MDPs components applied in petroleum industry are 

represented below (see Table 2). 

 
TABLE 2 

COMPONENTS OF MARKOV DECISION PROCESSES (MDPS) IN PETROLEUM 

Components Description 

State space (S) 
The remaining gasoline status  in the oil tank of gas 

station 

Action space 

(A) 

Two actions: reorder gasoline immediately or wait until 

next review period  

Transition 

probability (p) 

Probability of transferring between two states after 

taking any action  

Reward (r) 
-(duration of stockout + the waiting time of tanker trucks 

returned from distribution center) 

Decision rule 

(d) 

For any state, minimize the summation of the duration of 

stockout and waiting time of tanker trucks 

Policy (π) The sequential decisions to be made 

 

The revised model is a stationary infinite-horizon MDPs 

model and discounted with total expected future rewards (see 

Fig.2). The infinite time horizon signifies the service life of gas 

stations is long enough under the system control. In the MDPs 

model, the decision epochs are measured in hours for the reason 

that gasoline consumption cycle is comparatively short. The 

states represent the status of how much gasoline left at the oil 

tank of the gas station and we use the percentage of the full 

capacity to describe the state. For example, at the very first 

beginning, namely state 1, we assume the oil tank is full; so 

state 1 is 100%. Along with the gasoline consumption, there 

comes a group of different states with different inventory 

percentages. Until the last state 𝑁, assuming no gasoline left at 

all, so state 𝑁  is zero. For the remaining gasoline inventory 

status at each time point, the decision maker has two available 

decisions to choose: reorder the new gasoline from the 

distribution center immediately or wait until another review 

period. However, one point needs to be made clear. As we 

indicated before, road transportation is the main transportation 

mode and tanker trucks are the proper vehicles to use for 

transporting gasoline from the distribution center to the right 

gas stations. Usually the tanker trucks are categorized according 

to their full capacities, such as 5 tons, 10 tons, 15 tons, etc., and 

they will be filled up before driving to gas stations. Then, the 

gasoline carried in tanker trucks will be unloaded into gas 

stations completely. It is very dangerous for tanker trucks 

driving on the road with part of gasoline (less than full capacity) 

in the tank because the chemical reaction would possibly result 

in explosion. Therefore, if the gas station reorders too early or 

the consumption rate is unexpectedly considerably small during 

the lead time (the time interval between placing order and 

receiving gasoline), which makes the available capacity of the 

oil tank (gas station) too small to contain the gasoline carried in 
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the tanker truck returning from the distribution center, it is no 

wonder that the tanker truck needs to wait until the enough 

available capacity of the oil tank is made at the gas station. Thus 

waiting time occurs. It is not economic to keep the tanker truck 

waiting. In order to reduce transportation costs and other costs 

concerned with tanker trucks (i.e., purchasing cost, 

maintenance costs, depreciation costs, tax, etc.), the number of 

tanker trucks kept in use is limited. Therefore, waiting causes a 

waste of resources. The decision maker should reorder gasoline 

wisely to prevent the tanker trucks’ waiting happening. 

However, if the gas station reorders too late or the consuming 

rate is unexpectedly large during the lead time, that being said, 

there is great probability that no gasoline left in the gas station 

before the tanker truck filled with gasoline comes back. Under 

this condition, the gas station would lose part of its customers 

and might have the image damaged. Therefore, the decision 

maker should also reorder at an optimal timing point to avoid 

stockout. In conclusion, if the decision maker chooses the 

“Reorder” option in the current decision epoch, a post-reorder 

reward is obtained, which can be represented as [ - (duration of 

stockout + the waiting time of tanker trucks returning from the 

distribution center)]. Or, if the decision maker chooses to 

postpone the reorder until the next review period by taking the 

action “Wait”, a pre-reorder reward is received as [ - (duration 

of stockout)]. If there is no stockout before reorder at the 

beginning of the next review period, then the pre-reorder 

reward will equal to zero, which is the perfect condition. The 

fact that post-reorder rewards depend on the remaining gasoline 

inventory status makes the reward not assigned to the reordered 

state but to the action of reorder from each specific remaining 

gasoline percentage. Again, we use the general time 

measurement unit- hour to measure rewards. Another necessary 

component for MDPs model is transition probability, which 

determines the progression of the remaining gasoline status, or 

we can say the probability of transferring between any two of 

the states randomly. If the current state is 𝑖 and the decision 

maker chooses to “Wait” for one more review period, then the 

gas station can stay at its current remaining gasoline inventory 

percentage state with probability p(𝑖|𝑖, W), or move to another 

state 𝑗  randomly with probability p( 𝑗|𝑖 , W). However, the 

action “Wait” means no more gasoline from the distribution 

center coming in while the remaining gasoline at the gas station 

stays stable or is being consumed; thus state 𝑗 ranks equal with 

or behind state  𝑖 . The remaining gasoline inventory level at 

state  𝑗  is lower than or at most equal with the remaining 

gasoline inventory level at state 𝑖. On the other hand, “RO” 

means the oil tank of the gas station will be filled. So the gas 

station cannot stay at its current state 𝑖 but to move ahead to 

some other states randomly in which the remaining gasoline 

inventory percentage is comparatively higher than the gasoline 

inventory percentage at state 𝑖.     
   

State N 

(inventory is 

0)

State 2

State 1 

(inventory is 

100%)

State 3

  ...

Reward

 r(i,a)

Reorder 

gasoline

Random transition with 

probability p(j|i,a)

P(1|1,W)
P(2|2,W) P(N|N,W)

P(2|1,W)

P(3|1,W)

P(N|1,W)

P(3|2,W)
P(N|N-1,W)

P(N|2,W)

P(N|3,W)

P(1|2,RO) P(2|3,RO)

P(1|3,RO)

P(1|N,RO)

 
     

 

Fig. 2.  Markov decision processes (MDPs) in petroleum industry 

 

This infinite-horizon MDPs model for determining the 

optimal timing for gas stations to replenish includes the 

following three assumptions:   

1) The gasoline and diesel reserved at the distribution center 

is always enough and available to supply to gas stations. 

2) Gasoline is delivered normally, and no accidents, bad 

weather, or other factors that would prevent gasoline from 

being delivered normally. 

3) The discounting factor used to measure future rewards 

stays constant, no changing along with the time.  

 

There are seven parameters and one decision variable (see 

Table 3) in this revised infinite-horizon MDPs model. Let 𝑅(𝑖) 
be the reward of the gas station’s gasoline reorder applying the 

optimal policy when the remaining gasoline inventory 

percentage (state) is  𝑖 , 𝑖 =100% … 0, where 0 represents 

stockout. We use 𝑅(𝑖, 𝑅𝑂) to represent the post-reorder 

expected discounted rewards when the gas station state is 𝑖 at 

the time when reorder happens. We also use 𝑝(𝑗|𝑖,𝑊)  to 

represent the stationary probability that the gas station state will 

be 𝑗 at the review period 𝑡 + 1when it is 𝑖 at the review period 

𝑡 given the taken action “Wait”.  

 
TABLE 3 

PARAMETERS AND VARIABLES IN MARKOV DECISION PROCESSES (MDPS) 

Parameters Decision Variable 

𝐭 
Review period 

(time interval of checking the 

remaining gasoline status) 

R(i) 
The reward of the 

gas station using 

the optimal policy 

N 
Total number of the remaining 

gasoline inventory states 

𝐢, 𝐣 
Gas station states at different 

review periods (i, j ≤ N) 

𝐩(𝐣|𝐢) 
stationary transition probability 

from state i to another state 

j randomly 

𝐑(𝐢, 𝐑𝐎) 
Post-reorder expected discounted 

rewards 

𝐓(𝐬) 
Stockout time period for pre-

reorder 

 𝛉 Discounting rate    

 

         W: wait 

       RO: reorder 
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With applying the above parameters, the optimal policy to 

maximize the total rewards resulting from the actions taken at 

gas stations is found by solving the following recursive 

equations (5) ~ (6):  

 

𝑅(𝑖) = max {
𝑅(𝑖, 𝑅𝑂)

 {−𝑇(𝑠)+ (1 − 𝜃)∑ 𝑝(𝑗|𝑖)𝑁
𝑗=1 𝑅(𝑗)}                    

(5) 

∑ 𝑝(𝑗|𝑖)𝑁
𝑗=1 = 1,       𝑎 ∈ 𝐴(𝑖),  𝑖, 𝑗 ∈ S                                      

(6) 

 

From the above revised infinite-horizon MDPs model, we got 

known 𝑅(𝑖)  equals either 𝑅(𝑖, 𝑅𝑂)  corresponding to taking 

action “reorder” or negative stockout time period for pre-

reorder plus future discounted expected rewards written as  (- 

duration of stockout - waiting time of tanker trucks returning 

from distribution center), which corresponds to action “Wait” 

until next review period. The optimal policy is the set of actions 

at the corresponding states that lead to the maximized reward 

value. The revised MDPs model does not include the transitions 

to the “reordered” states for two reasons. On one hand, we rely 

on too much information about pre-reorder states rather than the 

post-reorder states when deciding the optimal timing to reorder; 

on the other hand, the rewards of transition between these two 

types of states (one type belongs to pre-reorder while the other 

one belongs to post-reorder) equals zero. 

B. Case Study  

1) Background 

A study was conducted within one of the largest Chinese 

petroleum companies. The company’s businesses involve 

exploiting crude oil, refining (gasoline), and transporting 

gasoline and diesel to gas stations. The capacities for the 

vehicles used are separately 5 tons, 10 tons, and 15 tons. There 

are totally eight distribution centers in the name of this 

petroleum company, and each distribution center takes charge 

of supplying gasoline to a group of gas stations. Recently, the 

operation of gas stations experiencing a low efficiency has been 

noticed. The gas stations sometimes experience stockout which 

leads to a serious consequence (i.e., losing customers). 

However, it also happens that the tanker trucks getting back 

from the distribution center are waiting to fill the oil tanks of 

the gas stations. The situation of low efficiency necessitates a 

study on exploring the optimal timing for gas stations to reorder 

and replenish their oil tanks. The gas stations check the 

remaining gasoline inventory status every other one hour. So 

the review period is one hour.   

We focus on studying one distribution center which locates 

in the northeast part of China, and is responsible for providing 

gasoline for total 126 gas stations. We collected the relevant 

data about this distribution center and one of its gas stations 

from the year 2010 to 2012 through observing the reorder 

frequencies of this gas station, especially the duration of 

stockout and the tanker trucks’ waiting time. The full capacity 

of the gas station is 10 tons. The remaining gasoline inventory 

percentage status was divided into 101 states, such as 100%, 

99% … 1%, 0%.  Also, the average lead time for the gas station 

is 2 hours assuming there are no unexpected accidents, bad 

weather, and any other factors influencing the normal delivery.  

2) Results Analysis 

We find the policy determining the optimal timing for the gas 

station to reorder using the revised infinite-horizon MDPs 

model.  Given the market interest rate (general inflation rate 

included) during 2010 ~2012, a discounted rate to measure 

future rewards is determined to be 4% on average. Therefore, 

the applied model changes to be as follows. 

 

𝑅(𝑖) = max {
𝑅(𝑖, 𝑅𝑂)

 {−𝑇(𝑠)+ (1 − 4%)∑ 𝑝(𝑗|𝑖)101
𝑗=1 𝑅(𝑗)}                

(7) 

    ∑ 𝑝(𝑗|𝑖)101
𝑗=1 = 1,       𝑖, 𝑗 ∈ [0,100]                                      (8) 

 

According to Denardo [21], the policy iteration algorithm is 

recommended to solve the above MDPs model. It starts with an 

arbitrary value until the algorithm finds the policy that returns 

the maximized rewards though iterative operation. Then the 

algorithm will stop at the maximized rewards and yield the 

optimal decision rule. The backward induction was applied in 

policy iteration algorithm to compare the reward functions one 

by one. If the reward functions for any two successive steps stay 

the same, then the optimal policy is generated. We implemented 

this procedure by running a well-structured C++ program. The 

developed optimal policy is that the gas station should wait until 

the remaining gasoline inventory percentage reaches 22% and 

then to reorder gasoline from distribution center.  

 

IV. CONCLUSION AND FUTURE WORK 

This research applied a revised infinite-horizon MDPs model 

to petroleum industry, determining the optimal timing for gas 

station to reorder and replenish its oil tank. Unlike the 

traditional mathematical methods applied in optimizing 

petroleum supply chain, revised infinite-horizon MDPs model 

constructed in this paper is more proper to solve practical 

gasoline reorder problems with uncertain demands, which 

makes this research meaningful. The result of the case study 

shows that no matter how the factors (i.e., customer demands) 

change outside, once the remaining gasoline inventory drops to 

22% of the full capacity, the decision maker should place the 

reorder and make sure that the duration for both the stockout 

and tanker truck’s waiting should be kept as low as possible, 

and zero is the perfect condition. 

  This research work brings managerial insights to general 

gas station replenishment problems on how to determine the 

optimal timing of reorder under uncertainties. The revised 

MDPs model in this research could be applied to any similar 

situations. The future work can try to explore the optimal timing 

for gas stations to replenish if the gasoline stored in the 

distribution center is limited.    
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