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Abstract—Nanostructured WO3 thin films have been prepared by 
thermal evaporation to detect hydrogen at low temperatures.  
The influence of heat treatment on the physical, chemical and 
electronic properties of these films has been investigated. The 
films were annealed at 400oC for 2 hours in air. AFM and TEM 
analysis revealed that the as-deposited WO3 film is high 
amorphous and made up of cluster of particles. Annealing at 
400oC for 2 hours in air resulted in very fine grain size of the 
order of 5 nm and porous structure. GIXRD and Raman analysis 
revealed that annealing improved the crystallinity of WO3 film. 
Gas sensors based on annealed WO3 films have shown a high 
response towards various concentrations (10-10000 ppm) H2 at 
an operating temperature of 150oC. The improved sensing 
performance at low operating temperature is due to the optimum 
physical, chemical and electronic properties achieved in the WO3 
film through annealing. 

Keywords-nanostructured; thin films; WO3; thermal 
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I.  INTRODUCTION  
Gas sensors operate on the principle of conversion of gas 

concentration into a measurable signal. Gas sensor devices that 
have been developed so far include mass sensitive sensors, 
optical sensors, electrolytic sensors and solid state sensors [1]. 
Among the solid-state gas sensors, semiconductor metal oxide 
gas sensors have received the most attention as they show good 
potential for continuous monitoring of gases. These sensors 
offer a wide variety of advantages over the traditional 
analytical instruments which include lower cost, easier 
manufacturing, smaller size, short response and faster recovery. 
Semiconductor metal oxide material such as tungsten oxide 
(WO3) has shown great potential for gas sensing due to its 
inherent electrical conductivity and excellent sensitivity 
towards various gases. Low fabrication costs combined with 
low power consumption and a promise of high gas sensitivity 
towards specific gases are the driving force behind research on 
WO3 for improved gas sensing properties. However, as for any 
other metal oxide based gas sensor, WO3 based gas sensors 
operate efficiently only in the temperature range 200oC-500oC 
[2]. 

The gas sensing mechanism is based on bulk resistance 
changes of the WO3 film induced by reactions between the 
target gases and the film surface. In air environment, oxygen 
molecules adsorb onto the surface of metal oxide layer to form 

O2
-, O- and O2- species by extracting electrons from the 

conduction band depending on the temperature [3] and type of 
metal oxide (n-type or p-type). For n-type sensor material like 
WO3 and a reducing gas, gas reacts with oxygen ions to form 
neutral molecules, leading to electron transfer to the sensor 
material and a resulting decrease in resistance. The 
microstructural properties of the film have a significant impact 
on sensing performance. The grain size, film thickness, 
porosity and heat treatment control the sensor performance. 
Nanosized materials have a very large surface area which 
offers more surface/gas interaction thereby enhancing the 
sensing properties. Sensing measurements on nanostructured 
WO3 deposited by thermal evaporation have shown promising 
performances towards sub-ppm concentrations of NO2 [4]. 
Mesoporous nanostructured WO3 films have shown a high 
sensitivity to NO2 even at low  concentrations [5]. WO3 thin 
films with smaller grain size obtained by rf sputtering have 
shown enhanced sensitivity to oxidizing gases [6]. Annealing 
of WO3 films after deposition has been reported to improve 
crystallinity and defined grain boundaries in the film [7-9]. 

The aim of this paper is to investigate the gas sensing 
performance of thermally evaporated WO3 films at low 
operating temperatures by optimizing the physical, chemical 
and electronic properties of these films. 

II. EXPERIMENTAL METHODS 
WO3 thin films were deposited on silicon substrate (8 mm x 

8 mm x 0.5 mm) with interditigated Pt electrodes using thermal 
evaporation technique. Tungsten oxide (99.9% purity, 20 μm) 
was used as evaporation source. Before the deposition, the 
powder was placed in dessicator to avoid any moisture and 
decontamination. A bell jar type PVD unit (Varian Coater with 
AVT Control System, Australia) was used to deposit the WO3 
thin films. The substrates were mounted on a substrate holder 
which was placed at a distance of 38 cm in line of sight from 
the evaporation source. Deposition was carried out at 4 x 10-5 
mbar. Powder was deposited onto the substrates at a rate of 35 
nm per second. A quartz crystal film thickness monitor was 
used to control the thickness of films which was restricted to 
300 nm. 

After the deposition, the films were annealed at 400oC for 2 
hours in air to improve the microstructural properties and 
relieve any thermal stresses in the films. 
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An NT-MDT P47 Solver Scanning Probe Microscope was 
used to study the surface morphology of the films. The WO3 
film surface was scanned by a silicon tip (radius of curvature 
10 nm) in semi-contact mode over an area ranging from 500 
nm2 to 2000 nm2. The mean grain size and grain distribution 
and surface roughness were determined by using the Nova NT-
MDT Image Analysis Software. A Jeol 1200 TEM was used at 
an accelerating voltage of 120kV to investigate the shape and 
size of WO3 nanoparticles. Samples were investigated by 
scratching the film and placing it on TEM grid. GIXRD 
analysis was performed on PANanalytical XPert Pro Multi 
Purpose Diffractometer (MPD). A Cu Kα radiation of 
wavelength 1.540 Å was used. The incident angle was kept at 
2o and the 2θ range was kept between 10o to 85o with a step 
size of 0.05o. The WO3 sensor responses to various 
concentrations (10-1000 ppm) of hydrogen at various operating 
temperatures (100oC to 300oC) were measured. Hydrogen was 
diluted in synthetic air to achieve the desired concentrations. 
For all the experiments, the total flow was adjusted to 200 
sccm. The gas sensing performance of the films to reducing 
gases such as H2 denoted as Sreducing is defined as the ratio: 

　（１）100　　　　　X
R

RR
S

gas

gasair
reducing

−
=  

where Rair is the resistance in air under stationary 
conditions and Rgas represents the resistance after the sensor is 
exposed to the target gas during a definite time. Equation 1 can 
be applied for n-type material such as WO3 and reducing gas 
such as H2. 

The response curve was recorded under a continuous flow 
of known amount of H2. A sequence control computer was 
utilized to computerize the pulse sequence of the H2 
concentrations. Initially, synthetic air was passed through the 
chamber at testing temperature until the stable baseline 
resistance was observed. Then a sequence of target gas pulse 
was generated for 10 minutes followed by synthetic air pulse. 
This procedure was continued until a stable baseline was 
observed after alternate pulses. This was followed by the 
experimental sequence of pulses and data was recorded. Each 
sensor was tested at temperatures between 100oC to 300oC at 
intervals of 50oC under various concentrations of H2, and 
optimum operating temperature was determined. This was 
followed by two full range tests for each sensor and H2 at the 
optimum operating temperature. 

III. RESULTS AND DISCUSSIONS 
The surface topography of as-deposited WO3 film is shown 

in Figure 1. The mean particle size and roughness were found 
to be 13 nm and 0.5 nm respectively, as determined from Nova 
NT-MDT Image Analysis Software. Upon annealing at 400oC 
for 2 hours in air, a very grain size (5 nm) and porous structure 
are observed (Figure 2). It appears that the as-deposited WO3 
film is made up of cluster of small particles. The nucleation 
and successive grain growth as a result of annealing at 400oC 
for 2 hours in air transformed these particles into very fine 
grains and well defined grain boundaries.  

Figure 3 shows the GIXRD patterns of as-deposited and 
annealed WO3 films. The as-deposited film did not show any 
diffraction pattern, which indicates that as-deposited film is 
highly amorphous. However, after annealing at 400oC, 
significant crystallinity is observed in the films, indicated by 
appearance of diffraction peaks in GIXRD pattern. The peaks 
obtained at 2θ = 24.112o, 28.538o, 34.361o, 41.615o, 49.843o, 
55.684o, 61.941o are closely related to monoclinic WO3 phase 
[10]. It should be noted that the lattice parameters of 
orthorhombic WO3 phase are very similar to monoclinic phase, 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  AFM topography image of as-deposited nanostructured WO3 thin 
film. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  TEM image of nanostructured WO3 thin film annealed at 400oC for 
2 hours in air. 

and thus, these two phases cannot be distinguished within the 
accuracy of GIXRD data. It has been reported that the two 
intense peaks observed at 2θ=24.278o and 34.117o are 
associated to (2 0 0) and (2 2 0) monoclinic planes of WO3 
corresponding to d=3.663o and 2.626 Å, respectively [11]. The 
lattice parameters were found to be a = 7.375 Å, b = 7.375 Å 
and c = 3.903 Å and its unit cell volume is about 212.38 Å3. 
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Figure 3.  GIXRD spectra of as-deposited and annealed WO3 thin films. 

The Raman spectra of as-deposited and 400oC annealed 
films are shown in Figure 4. Two characteristic Raman bands 
are associated with WO3. The first band lies between 200-500 
cm-1 and is associated with O-W-O bending vibration modes. 
The second band lies in the range 600-1000 cm-1 and is 
associated with W-O stretching vibration modes. The as-
deposited WO3 film exhibited weak and broad Raman bands 
centred at 315 cm-1 and 799 cm-1. These features are 
characteristic of amorphous materials and are usually assigned 
to O-W-O deformation modes and O-W-O stretching vibration 
modes of monoclinic WO3 phase, respectively [12]. This is in 
accordance with the GIXRD observations. However, 
crystallinity of the WO3 increased after annealing at 400oC, as 
shown by sharp peaks at 707 cm-1 and 799 cm-1 which are 
characteristic of O-W-O stretching vibration modes [13]. 
Raman results indicate that the annealed films are highly 
crystalline, which is also supported by GIXRD observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Raman spectra of as-deposited and annealed WO3 thin films. 

The as-deposited films did not show any response towards 
H2 in the selected temperature range. It has been shown 
experimentally that amorphous films have poor sensor 

response characteristics [14]. The amorphous nature of the as-
deposited films seems to lead these films being not suitable for 
gas sensing. When the film is annealed at 400ºC, an optimum 
response is obtained at an operating temperature of 150ºC (Fig. 
5). A high sensitivity S=10 to 10,000 ppm H2 is observed. The 
response and recovery time to 10000 ppm H2 are 140 s and 80 
s at 150ºC. 

WO3 is an n-type semiconductor material and commonly 
operates as a gas sensor in the temperature between 200°C -
500°C [15]. When it is exposed to a reducing gas such as H2, 
the oxygen adsorbates on the film surface interact with the gas 
and release electrons back to the film, causing a drop in film 
resistance. However, the opposite behaviour (i.e. an increase in 
resistance) is observed for the 400ºC annealed WO3 film upon 
exposure to H2 at 150ºC. Such behaviour cannot be explained 
by merely considering the microstructural properties such as 
grain size and porosity of the film. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Dynamic response of 400oC annealed WO3 thin film upon 
exposure to H2 at 150oC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Response amplitude of 400oC annealed WO3 film upon exposure to 
H2 at 150oC. 
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In polycrystalline materials, surface barriers which 
electrons have to overcome for taking part in the conduction 
are formed at the intergranular surfaces. The height of surface 
barrier depends on the concentration of charge carriers (oxygen 
adsorbates) at the surface, and, therefore, overall resistance 
changes can be correlated with changes in surface band 
bending. The overall resistance, and, hence, surface band 
bending increased exponentially when the polycrystalline WO3 
surface was exposed to increasing concentrations of oxygen 
[16]. The increase in resistance observed for the 400ºC 
annealed WO3 film exposed to H2 at an operating temperature 
of 150ºC might arise from various forms of oxygen adsorbates 
(O-, O2- and O2

-) on WO3 surface, which depend on 
temperature. At 150ºC, the most dominant form of adsorbed 
oxygen is O2

- [17]. Upon exposure to H2, the O2
- species 

dissociates into O- with the formation of water, as per the 
following equation. 

)2(222
−− +→+ OOHOH  

Insitu Raman analysis of WO3 films annealed at 300ºC and 
400ºC has shown that the rate of water desorption above 100ºC 
is much faster than the rate of water formation on the film 
surface when WO3 film is exposed to H2 [18]. At 150ºC, the 
high concentration range of H2 (600 ppm – 10000 ppm) 
produces more O- species on the surface, leading to increase in 
surface barrier height, consequently increasing the resistance. 
Hence, this can be a reason why an increase in resistance was 
observed at lower operating temperature. The high sensitivity 
to H2 at 150ºC observed for the 400ºC annealed WO3 film is 
attributed to its very small grain size (5 nm), porous structure 
and high crystallinity. 

IV. CONCLUSIONS 
Nanostructured WO3 thin films have been deposited using 

thermal evaporation technique. The as-deposited films are 
highly amorphous and made up of cluster of particles. 
Annealing these films at 400oC for 2 hours in air improved the 
crystalline and transformed these clusters into very small grains 
of 5 nm size and a porous structure. The GIXRD and Raman 
analysis show that annealing improves the crystallinity of these 
films. The annealed WO3 film shows a high response to 
various concentrations of H2 at a relatively low temperature of 
150oC. The response to hydrogen is mainly attributed to the 
very small grain size, porous structure and high crystallinity 
achieved by heat treatment. 
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