
 

 

Abstract—This paper uses an effective method, CODEQ 

method, with integer programming for solving the capacitor 

placement problems in distribution systems. Different from the 

original differential evolution (DE), the concepts of chaotic search, 

opposition-based learning, and quantum mechanics are used in the 

CODEQ method to overcome the drawback of selection of the 

crossover factor and scaling factor used in the original DE method. 

One benchmark function and one 9-bus system from the literature 

are used to compare the performance of the CODEQ method with 

the DE, and simulated annealing (SA). Numerical results show 

that the performance of the CODEQ method is better than the 

other methods. Also, the CODEQ method used in 9-bus system is 

superior to some other methods in terms of solution power loss and 

costs. 

 
Index Terms—Capacitor Placement. Chaotic Search. CODEQ. 

Opposition-based Learning. Quantum Mechanics.  

 

I. INTRODUCTION 

apacitors are widely installed in distribution systems for 

reactive power compensation to achieve power and energy 

reduction, voltage regulation and system capacity release. And, 

the installation of shunt capacitors in primary distribution 

systems can also effectively reduce peak power and energy 

losses. The extent of these benefits depends greatly on how the 

capacitors are placed on the system, namely on the location and 

size of the added capacitors [1,2]. The objective in the capacitor 

placement problem is to minimize the annual cost of the system, 

subject to operating constraints under a certain load pattern. 

Grainger et al. [3-5] proposed the concept that the size of 

capacitor banks was considered as a continuous variable. Bala 

et al. [6] presented a sensitivity-based method to solve the 

optimal capacitor placement problem. Using genetic algorithm 

(GA) to select capacitors for radial distribution systems was 

proposed in [7]. In the above-mentioned methods, the 

capacitors were often assumed as continuous variables, in which 

cost is proportionate to the capacitor size. However, 

commercially available capacitors are discrete. Selecting 

integer capacitor sizes closest to the optimal values found by the  
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continuous variable approach may not guarantee an optimal 

solution [8]. Therefore the optimal capacitor placement should 

be viewed as an integer-programming problem, and discrete 

capacitors will be considered in this paper. The teaching 

learning based optimization (TLBO) approach to minimize 

power loss and energy cost by optimal placement of capacitors 

in radial distribution systems [9]. Muthu Kumar et al. [10] 

proposed an opposition based differential evolution (ODE) 

method for a distribution system reconfiguration to operate the 

system at minimum cost and at the same time improves the 

system reliability and security.  Olamael et al. [11] proposed a 

new adaptive modified firefly algorithm to solve optimal 

capacitor placement problem. 

Differential evolution (DE) as developed by Stron and Price 

[8] is one of the best Evolutionary algorithms (EAs), and has 

proven to be a promising candidate to solve real valued 

optimization problems [12]. This method also turned out to be 

one of the best genetic algorithms for solving the real-valued 

test function suite of the first International Contest on 

Evolutionary Computation, which was held in Nagoya in 1996. 

DE is a stochastic search and optimization method. The fittest of 

an offspring competes one-to-one with that of the corresponding 

parent, which is different from the other EAs. This one-to-one 

competition gives rise to a faster convergence rate. However, 

this faster convergence also leads to a higher probability of 

obtaining a local optimum because the diversity of the 

population descends faster during the solution process. To 

overcome this drawback, the parameters selection is very 

important for the DE method. However, the parameters 

selection is more sensitive with the problem. For example, a 

fixed scaling factor is used in DE. Using a smaller scaling 

factor, DE becomes increasingly robust. However, much 

computational time should be expanded to evaluate the 

objective function. DE with a larger scaling factor should result 

generally falls into local solution or misconvergence. Lin et al. 

[13] used a random number that its value is between zero and 

one as a scaling factor. However, a random scaling factor could 

not guarantee the fast convergence. So, Omran et al. [14] 

presented an effective method, CODEQ method, to overcome 

the drawback of the parameters selection problem. Only two 

parameters, population size and the maximum iteration, are 

necessary for the CODEQ method. 

In this study, a CODEQ method [14-16] with integer 

programming for solving the optimal capacitor placement of 
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distribution systems is proposed. Here, the concepts of chaotic 

search, opposition-based learning, and quantum mechanics are 

used in the CODEQ method to overcome the drawback of 

selection of the crossover factor and scaling factor used in the 

original DE method. Optimal capacitor placement is a 

combinatorial optimization problem that is commonly solved by 

employing mathematical programming techniques. However, in 

those methods, the capacitors are often assumed as continuous 

variables in which cost is proportionate to the capacitor size. 

Selecting integer capacitor sizes closet to the optimal values 

found by the continuous variable approach does not guarantee 

an optimal solution. Therefore, the optimal capacitor placement 

should be viewed as an integer-variable problem. The CODEQ 

method can be used to solve the integer-variable problems 

effectively. To illustrate the convergence property of the 

proposed method, one benchmark function and one 9-bus 

system from the literature are solved respectively by the 

proposed method, DE, and SA. From the computational results, 

it is observed that the convergence property of the CODEQ 

method is better than that of the other methods. 

 

II. PROBLEM FORMULA 

The mathematical model of the optimal capacitor placement 

of distribution systems can be expressed as follows: 

COSTmin  (1) 

Subject to 

maxmin VVV i   (2) 

Where iV  is the voltage magnitude of bus i , minV  and 

maxV  are the minimum and maximum voltage limits, 

respectively. 

The objective function COST  in (1) is an overall cost 

relating to power loss and capacitor placement. The voltage 

magnitude at each bus must be maintained between its minimum 

and maximum voltage limits. To avoid the complex iteration 

process for power flow analysis, a set of simplified feeder-line 

flow formulations is applied. Considering the single-line 

diagram depicted in Fig.1, the following set of recursive 

equations is used for power flow computation [17]. 
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Where iP  and iQ  are the real and reactive powers flowing 

out of bus i , and LiP  and LiQ  are the real and reactive load 

powers at bus i . The resistance and reactance of the line section 

between buses i  and 1i  are denoted by 1, iiR  and 1, iiX , 

respectively. 

The power loss of the line section connecting buses i  and 

1i  may be computed as 
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The total power loss of the feeder, LossTP , , may then be 

determined by summing up the losses of all line sections of the 

feeder. Which is given by 
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Considering the real-world capacitors, there exists a finite 

number of standard sizes which are integer multiples of the 

smallest size 
CQ0 . Besides, the cost per kVAr varies from one 

size to another. 

In general, capacitors of larger size have lower unit prices. 

The available capacitor size is usually limited to 
CC LQQ 0max   (8) 

Where L  is an integer. Therefore, for each installation 

location, there are L  capacitor sizes  CCC LQQQ 000 ,,2,   

available. Given the annual unit capacitor installation cost for 

each compensated bus, the total cost due to capacitor placement 

and power loss change is written as 



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Where pK  is the equivalent annual cost per unit of power 

loss in )/($ yearkW  , and here $  is a fictional monetary unit. 

The constant iK  is the annual unit capacitor installation cost. 

And, ni ,,2,1   are the indices of buses selected for 

compensation. The bus reactive compensation power is limited 

to 
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 (10) 

Where 
C
iQ  and LiQ  are the reactive power compensated at 

bus i  and the reactive load power in bus i , respectively. 

 

III. CODEQ METHOD 

The main idea of the CODEQ method is to use the concepts 

of chaotic search, opposition-based learning, and quantum 

mechanics into the original DE method to overcome the 

drawback of selection of the crossover factor and scaling factor. 

The CODEQ method is briefly described in the following. 

Step 1. Initialization 

Input system data and generate the initial population. The 

initial population is chosen randomly and would attempt to 

cover the entire parameter space uniformly. The uniform 

probability distribution for all random variables as following is 

assumed 

pii Niround ,...,1)),(( minmaxmin

0  ZZZZ   (11) 

Where  1,0i  is a random number, and )(bround  

represented as the nearest integer for the real number b . The 
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initial process can produce pN  individuals of 
0
iZ randomly. 

Step 2. Mutation operation 

The essential ingredient in the mutation operation is the 

difference vector. Each individual pair in a population at the 

G-th generation defines a difference vector jkD  as 

G
k

G
jjk ZZD   (12) 

The mutation process at the G-th generation begins by 

randomly selecting either two or four population individuals 
G
jZ , 

G
kZ , 

G
lZ  and 

G
mZ  for any j , k , l  and m . These four 

individuals are then combined to form a difference vector 

jklmD  as 

)()( G
m

G
l

G
k

G
jlmjkjklm ZZZZDDD   (13) 

A mutate vector is then generated based on the present 

individual in the mutation process by 

pjklm
G
p

G
i NiF ,...,1,ˆ 1 

DZZ  (14) 

However, the scaling factor value is depends on the problem. 

Different from the original DE algorithm, the concept of the 

quantum mechanics [14, 18] is used to generate the noisy replica 

from the parent individual in CODEQ algorithm as follows: 
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Where  1,0u  is a random number. 

Step 3. Estimation and selection 
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Where minarg  means the argument of the minimum. 

Step 4. Exclude operation if necessary 

To increase the convergence of the CODEQ algorithm, the 

exclude operation is considered. First, a new individual is 

created as follows: 
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Where   and   are randomly generated numbers uniformly 

distributed in the range of (0,1). 1G

worstZ  and 1G

bestZ  are the worst 

and best individual in the (G+1)th generation. 1Gc  is the 

chaotic variable defined as follow: 
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Where 0c  and p  are initialized randomly within the interval 

(0,1). 

The worst individual in the G-th generation is replaced by the 

generated individual, if the fitness of the generated individual is 

better than that of worst individual in the G-th generation. 

Step 5. Repeat step 2 to step 4 until the maximum iteration 

quantity or the desired fitness is accomplished. 

 

IV. APPLICATION OF THE PROPOSED METHOD 

One benchmark function and one 9-bus system from the 

literature are investigated and the results are used to compare 

the performance of the CODEQ method with the DE, and SA 

methods. The FORTRAN SA [19] algorithm solver accessed 

from http://www-aig.jpl.nasa.gov/public/home /decoste/TMLS 

/NN/glopt/glopt.html#sa_codes, is used to solve the optimal 

capacitor placement problems. The SA solver recommended 

some setting factors for a user. For comparison, the SA 
package is rewritten using Matlab software. 

Example 1: Let us consider the maximization problem is 

described by 

     221121
,

20sin4sin5.21,max
21

zzzzzzJ
zz

   (20) 

Where  1.123 1  z  and 8.51.4 2  z . This problem has 

been solved by the simple genetic algorithm using the 

population size of 20. The best result in generation 396 had the 

best objective function value of 38.827553, as also shown in 

Michalewicez [20]. 

To verify the performance of the CODEQ method, the 

convergence property of the CODEQ method and the original 

DE method are compared via this example firstly. The 

population size 20pN , scaling factor 1.0F , crossover 

factor 5.0RC ,  and maximum iterations of 300, are used in 

the DE method for solving this example. Six strategies of 

mutation operation are respectively used to solve this example. 

This solution of this example is repeatedly solved one hundred 

times. The largest and smallest values among the best solutions 

of the one hundred runs are respectively expressed in Table I. 

The average for the best solutions of the one hundred runs and 

the standard deviation with respect to the average are also 

shown in this table. A smaller standard deviation implies that 

almost all the best solutions are close the average best solution. 

From the Table I, the standard deviation for the CODEQ 

method is smaller than the other mutation strategy. That implies 

the convergence property of the CODEQ method is better than 

the original DE method. Five parameters including the 

population size, mutation operation, crossover factor, scaling 

factor, and the maximum iteration number must be set in the 

original DE method. But, only two parameters, population size 

and maximum iteration number, needs to set in the CODEQ 

method. The best solutions for these one hundred runs are 

compared to the best objective function value obtained by the 

simple genetic algorithm. The number of times that these best 

solutions were greater than 38.827553 is shown in Table I. 

From the Table I, the number of the successful runs that the best 

solutions were greater than 38.827553 is 10, 2, 6, 65, 70, and 14 

for six different strategies of mutation operation. The number of 

the successful runs that the best solutions were greater than 

38.827553 is 55 in the CODEQ method. Only fourth and fifth 

mutation strategy is better than the CODEQ method. Table II 

lists the standard deviation values when the population size is 

reassigned to 10 and 5 to solve this example one hundred times, 

respectively. From the above discussion, the convergence 

property of the CODEQ method is better than the original DE 
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method. 

Example 2: The application example [17] is a 23-kV, 

9-section feeder system. Details of the feeder and the load 

characteristics are given by [17]. The equivalent annual cost per 

unit of power loss, pK , is selected to be $ 168 )/( yearkW   

and the limits on the bus voltages are 

..90.0min upV   (21) 

..10.1max upV   (22) 

Two cases are investigated. 

Case 1: It is restricted that only 3 locations (buses 4, 5, and 9) 

are available for placement of capacitors. The setting-factors 

used in the CODEQ to solve this case are as follows. The 

population size, pN , is set to 5. The maximum generation is 

500. These initial-setting factors for the DE method are the 

same as that for the CODEQ, except that the DE uses a scaling 

factor fixed to 0.6, a crossover factor fixed to 0.5 and second 

mutation operator. The SA is also applied to solve this problem. 

To verify the performance of the proposed algorithm, this case 

was repeatedly solved one hundred times. The best and worst 

values among the best solutions of these one hundred runs are 

listed in Table. III. The average value and standard deviation 

(STD) for the best solutions of these one hundred runs is shown 

in this table. The best solutions for these one hundred runs are 

compared with the best objective function value obtained by the 

simulated annealing. The Exhaustive Search method is also 

repeatedly used to solve this problem one hundred times. The 

best function value obtained by the Exhaustive Search is 

$ 118,538.53 year/ . The best function value obtained by the 

Exhaustive Search is the same as that obtained by the CODEQ. 

Case 2: All buses are available for placement of capacitors. 

Parameters for the CODEQ application are selected as those of 

case 1, except that the maximum generation is set to 5000. The 

DE and SA are also applied to solve this problem. Table IV 

expresses the best and the worst values among the best solutions 

of one hundred runs. The average value and standard deviation 

for the best solutions of those one hundred runs are also listed in 

this table. From the computational results, it is observed that the 

SA method cannot find the global solution in one hundred runs. 

The worst objective function value of these one hundred runs 

obtained by the CODEQ method is smaller than those of the DE 

and SA. Comparing the results of the DE and CODEQ, reveals 

that they are almost the same. However, the performance of DE 

is dependent on the choice of the mutation operator. The best 

and average results of CODEQ are relatively better than those of 

the other three methods. The best objective function value of 

these one hundred runs is $ 115,398.17 year/ . 

 

V. CONCLUSION 

Several heuristic methods including the CODEQ, DE, and 

SA used to solve one benchmark function and one capacitor 

placement problem had been described in this work. The 

concepts of chaotic search, opposition-based learning, and 

quantum mechanics are used in the CODEQ method to 

overcome the drawback of selection of the crossover factor, 

scaling factor, and mutation operator used in the original 

differential evolution (DE) method. From example 1, the 

convergence property of the CODEQ method is outperforming 

than the original DE method. From example 2, the computation 

results shows that the solution obtained by the CODEQ method 

is better than those obtained by the DE and SA methods. 
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