GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

Useful Activities for Improving the Attitudes and
Characteristic of Student Groups in
Programming Course

Isao Miyaji

Abstract—In a programming course, lectures were given using a
slideshow, and syntax and example programs from a textbook
were explained. Afterward, students received worksheets with
example programs and problems for practicing syntactic
elements, and the professor explained the worksheets. The
students then performed an exercise where they created a
program based on example programs as an assignment. They
were instructed to finish as much of their program as possible
during class and to submit their program file and a report file
over an e-learning site. They could learn either in class or
through lecture slides uploaded to an e-learning site. Students'
attitudes were assessed before and after the course. The
attitudes and activities were analyzed with cluster analysis.
Useful activities for improving the attitudes in a programming
course were found by chi-square analysis of cross-tabulation of
attitude and activity clusters. Principal component analysis of
attitudes was conducted. Students were classified based on
principal components of attitude scores. Characteristic of
student groups is explained. The findings are reported in this

paper.

Keywords- programming course; useful activities; attitude;
blended learning; exercise, assignment

1. INTRODUCTION

Blended learning is currently being used to make classes
more effective, more efficient, and more attractive to
students, particularly at institutions of higher education [2]
[6]. The author of this paper promotes a university education
that includes creating things and evaluating them in order to
build problem-solving skills [6]. It is advocated that in
addition to lectures, learning opportunities for a variety of
students should be created through classes that take
individual students' situations into account and allow them to
prepare for class and review "anytime and anywhere.”

One way of doing this is blended classes that combine
methods such as lecture organizing notebooks, e-learning
(learning with lecture slides, learning with exercise problems,
collaborative learning and peer review of student-generated
learning materials), and quizzes, which have been

DOI: 10.5176/2345-7163 3.1.66

29

demonstrated effective in a previous report by the same
author of conducting such a course [3] [5]. The author also
found that using comprehension surveys and increasing
interactions between students and faculty can further enhance
results [4].

Several methods to deepen students' understanding in
programming class have been proposed [11]. One method
that has been reported to be effective is blended learning
classes [12]. There are also reports of students collaborating
on projects and then evaluating them [11].

In this study, a professor conducted blended classes that
utilized e-learning while considering what media are required
for a programming class [7]. The format of the class was as
follows. Problems and answers from the previous class were
explained, and then a lecture was given with slides based on
the day's syntax elements and processing details. Next,
students were given a worksheet with example problems and
assigned problems that included the information taught that
day, and the professor explained the worksheet with slides.
Afterward, they performed an exercise where they created an
assigned program while referring to syntax, processing
details, and example programs. There was also a
collaborative learning element to this. At the midpoint and
end of the course, students created a program as an
independent project and revised their program based on the
peer assessment after reviewing each other’s programs.
Students were surveyed about their thoughts regarding this
system and results were reported [8]. Students’ scope of
knowledge has been measured using a metric such as
familiarity with terminology. The results of conducting and
analyzing pre- and post-course surveys of students’ attitudes
and their familiarity with terminology were reported [9] [10].

In this paper, useful activities for improving the attitudes
in this programming course were found by chi-square
analysis of cross-tabulation of attitude and activity clusters.
Principal component analysis of attitudes was conducted.
Students were classified based on principal components of
attitude scores. Characteristic of student groups is explained.

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

II. COURSE DESIGN AND CONTENT

The blended course was a programming elective for
second-year students in the Faculty of Information Sciences
at A University. Each class was 90 minutes long and 15
classes were held. The contents of the lectures and lecture
plans are shown in TABLE 1. A final examination was held
after the fifteenth class to motivate students to learn and to
assess their understanding. Twenty-seven students took the
course. Exercises were led by the instructor and a TA.

A. Course Objectives and Goals

In web services that run on the current Internet, programs
such as CGI dynamically run on the web server and change
web pages. The objectives of this course are to learn PHP,
which is a language often used in CGI, as well as to learn
how to execute basic programs and to be able to create a
dynamic website.

The achievement goals are as follows: (1) understand the
relationship between a server and a client, (2) understand web
services, (3) learn how to use PHP, and (4) learn how to
generate CGL

Students will also engage in researching, thinking,
creating, evaluating, and revising activities during the course
and will build problem-solving skills that they will need as
members of society.

B. Class Format

The format of each class was as follows. First, answers to
problems from the previous class were explained
(approximately 10 minutes). Next, a lecture based on the
day's syntax elements and processing details from the
textbook [1] was given using slides (approximately 30
minutes). Students were then given a worksheet with example
problems and practice problems that included the content
from that day. An explanation of this worksheet was given

using slides (approximately 10 minutes). Afterward, students
were instructed to perform an exercise where they created a
program while referring to syntax, processing details, and
example problems (approximately 40 minutes). Students
were allowed to download example programs, run the
programs, and observe the processing flow as well as the
result of running the program. Students who finished their
practice program were instructed to submit the program with
areport file.

C. Class Format Description of Assignments

As assignments, students were instructed to create one
related PHP program for each chapter discussed in the
lecture. After they finished their program, they were
instructed to paste it into a report form outline on A4 paper
and to submit it along with the program file. The items on
the report form were a program list, result of execution, and
observations. Grades were determined comprehensively
from submitted work such as exercises and assigned
problems as well as from the final examination.

On the seventh and eighth weeks as well as the fourteenth
and fifteenth weeks, students were assigned to independently
design and create a program for another person to use, for
example, a card game, a fortune-telling program, or a math
learning program using elements such as control statements
and arrays. The process for completing this project was as
follows. On the first week of the project, students (1) created
a program, (2) ran their created program, (3) underwent peer
review, and (4) revised their program based on peer review.
On the following week, they (5) ran their revised program,
(6) did another peer review, (7) assessed whether they had
revised the program properly, and (8) filled out a report.
Report forms for submitted independent projects were
uploaded so that others could view them.

TABLE I. DESIGN OF THE PROGRAMMING COURSE

Lesson e—learning
. Examples . Survey of Learning
Week Contents No. of! Distributed Self-i d Si f . .
sﬁ d:s dolzulrn:nis Textbook and aessiITrF"noesni term :;;:;L: by lessoni Downloading Program Reports Evaluation sheet|
assignments © recognition slides
1iBefore beginning PHP 36 Document of Pre Pre How to create
lesson plan PHP program
2{Basic program 25 E:IVI; ;toogz:e Chapter 1| Example 1 Chapter 1 Reprt
3iVariable 28 Chapter 2| Example 2 Chapter 2 Ev::]ueaet::on Assignment 1 i Assignment 1
4iCondition sentence 42 Chapter 3| Example 3 Chapter 3 Assignment 2 : Assignment 2
5{Repetition sentence 40 Chapter 4| Example 4 Chapter 4 Assignment 3 : Assignment 3
6i{Array and control sentence 27 Chapter 2| Example 5 |Specification 1 Chapter 2zpendent proj, Assignment 4 : Assignment 4 |Self assessment
Mutual use of self-imposed . . Peer
assignment 1, Evaluation, Correction Program Assignment 5 . Assignment 5 iassessment
s Mutjual use of self—lmposed Example 6 Correction §Peer
assignment 1, Evaluation iassessment
9iFunction 32 Chapter 5| Example 7 Chapter 5 Assignment 6 | Assighment 6
10{Use of the regular expression 27 Chapter 6 | Example 8 Chapter 6 Assignment 7 : Assignment 7
11{Use of the character string function 23 Chapter 6 | Example 9 Assignment 8 : Assignment 8
12{Use of the file 22 Chapter 8 | Example 10 Chapter 8 Assignment 9 : Assignment 9
13{Access to a database 30 Chapter 8 | Example 11 | Specification 2 Assignment 10:Assignment 10:Self assessment
Mutual use of self-imposed Independen . . Peer
14 assignment 1, Evaluation, Correction Program t project Assignment 11 Assignment 11 assessment
15 Mutrual use of self—lmposed Correction Post Post Peer
assignment 1, Evaluation assessment

30

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

D. E-learning Contents

The e-learning system that was prepared and made
available to students offered the following capabilities: (1)
viewing of lecture slides for studying, (2) viewing of
independent project reports, (3) download of example
programs and problems, (4) download of practice problems
to review syntactic elements, (5) materials for download, (6)
an assignment upload function, and (7) a message board.

E. Types of Media Used

The course was conducted using the following media: (1)
written explanations of lecture content, (2) lecture slides, (3)
instructions for writing PHP programs, (4) sheets explaining
example programs and assignments, (5) practice problems to
review syntactic elements, (6) explanation of how to design
independent projects, (7) an evaluation sheet file, (8) a report
outline file, (9) slideshow files explaining example programs
and assignments, and (10) e-learning.

III. RESULTS OF ANALYSIS

Students’ attitudes toward their abilities were assessed to
understand how their attitudes changed after they took the
programming course. The number of attitudes is 55. They were
asked to select helpful activities and write them to the right of
their attitude score on the post survey. The number of activities
is 33. Data from these surveys were analyzed with significance
tests and the results of this analysis are explained below.
Changes in attitude and activities for improving attitude were
analyzed using multivariate analysis.

In the following results, a significance level of 5% was
considered to indicate a significant difference. Significance
levels of 0.1%, 1%, 5%, and 10% are indicated with **%*_ **
*, and +, respectively.

A. Classification of Attitudes and Helpful Activities with
Cluster Analysis

In a follow-up study, students were asked to select helpful
activities from a list of 33 items as shown in TABLE III and
write them to the right of their attitude score. The number of
activities listed was then cross-tabulated with attitudes and
activities. The total number of activities listed was 2224 (92.7
per person). The cross-tabulation table of attitude and activities
was 55 rows by 33 columns. The number of activities in each
cell of the cross-tabulation table was small (approximately 1.2)
which made it difficult to determine helpful activities that way.
Then cluster analysis is conducted to classify attitude and
activities respectively. The results are explained in the
following. Attitude items are denoted with a number put in
parentheses (e.g., “(1)”) and activities are denoted with the
number alone (e.g., “1.”).

1) Attitude Categories

The 55 x 33 cross-tabulation table was analyzed by using
attitudes as cases and activities as variables. Based on the
obtained dendrogram, attitudes were classified into four
clusters as shown in TABLE II. Group I comprised attitudes
toward nine abilities: “(5) Ability to design a program,” “(6)
Ability to do things systematically,” “(9) Ability to gather
information,” “(1) Interest in computers,” “(2) Knowledge of

31

<

computers,” “(3) Computer operating skills,” “(4) Expanding
how to use computers and usage of computers,” “(7)
Broadening depth of knowledge,” and “(8) Ability to learn.”
These are only general abilities. The number of activities listed
ranged from 44 to 54. Among these, the most activities were
listed for (2), (3), (5), and (6). Based on its constituent items,
Group I can be characterized as “I. Understanding of
computers and ability to systematically set tasks.”

Group II comprised attitudes toward 21 items: “(36)
Ability to express an idea as an algorithm,” “(38) Ability to
review the flow of an algorithm,” “(35) Ability to think about
things in stages,” “(37) Ability to think about algorithms,”
“(31) Interest in programming,” “(32) Knowledge of
programming,” “(54) Knowledge of correcting program
errors,” “(52) Knowledge of PHP syntax,” “(18) Ability to
self-evaluate,” “(24) Level of satisfaction,” “(11) Ability to
analyze information,” “(10) Ability to organize and summarize
information,” “(39) Ability to improve algorithms,” “(17)
Ability to communicate,” “(25) Feeling of accomplishment,”
“(41) Ability to debug PHP programs,” “(55) Knowledge of
programming techniques,” “(26) Problem-solving abilities,”
“(14) Ability to explain things,” “(40) Ability to express ideas
with PHP,” and “(30) Interest in the field.” Twelve of these
items were programming abilities. The number of activities
listed ranged from 37 to 44, and almost the same number of
activities was listed for each item. Based on these 21 items,
Group II can be characterized as “II. Attitudes toward
programming techniques.”

Group III comprised attitudes toward five items: “(19)
Ability to evaluate others,” “(20) Ability to revise and
improve,” “(46) Ability to read other people’s programs,”
“(47) Ability to read other people’s reports,” and “(45) Ability
to understand other people’s ideas.” Three of these items were
programming abilities. The number of activities listed ranged
from 37 to 40 and almost the same number of activities was
listed for each item. Based on these five items, Group III can
be characterized as “IIl. Attitudes toward evaluating other
people’s work.”

Group IV comprised attitudes toward 20 items: “(21)
Ability to do deep research,” “(48) Ability to express ideas
using a computer,” “’(29) Ability to create things,” “(53)
Knowledge of basic algorithms,” “(27) Ability to organize
knowledge,” “(28) Ability to think independently,” “(34)
Desire to try problems,” “(49) Ability to collaborate,” “(33)
Desire to learn about programming,” “(43) Ability to improve
a program to make it good,” “(23) Ability to learn
collaboratively,” “(42) Ability to configure test data,” “(15)
Ability to give a presentation,” “(16) Ability to listen to
others,” “(22) Ability to see things through,” “(51) Ability to
keep working on something until it is finished,” “(12) Ability
to express ideas in writing,” “(44) Ability to write reports
about programs,” “(13) Ability to express ideas in non-written
form,” and “(50) Ability to proactively work on problems.”
Ten of these items were attitudes about programming. The
number of activities listed ranged from 34 to 42, and almost
the same number of activities was listed for each item. Based
on these 20 items, Group IV can be characterized as “IV.
Attitudes toward working on assignments.”

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

TABLE II. NUMBER OF HELPFUL ACTIVITIES LISTED FOR EACH ATTITUDE ITEM

Groups Attitudes toward abilities F::g: Sum
s 2 (5) Ability to set challenges, ability to discover problems 48
o) § (6) Ability to plan, to do things in a planned manner 48
S 3 = (9) Ability to gather information, ability to conduct research 44
_g’ 3 % i (1) Interest in and curiosity about computers 46
T § % (2) Understanding of computers 54| 425
% g % (3) Computer operation skills 48
g §_ g (4) Computer usage methods and broadening of situations 47
5 g 4 i (7) Cultivation of understanding of knowledge learned 45
— o % (8) Ability to study by oneself, ability to learn 45
(36) Ability to express an idea as an algorithm 40
(38) Ability to review the flow of an algorithm 41
(35) Ability to think about a problem in stages 40
(37) Ability to think about algorithms 41
(31) Interest in programming 43
e (32) Knowledge of programming 44
_3— (54) Knowledge of correcting program errors 41
£ (52) Knowledge of PHP syntax 41
_§ (18) Ability to appropriately self-evaluate one’s thoughts 39
& (24) Sense of accomplishment, sense of satisfaction 37
= (11) Ability to analyse information 39| 842
£ (10) Ability to sort through related information or data 41
Eﬂ (39) Ability to improve algorithms 40
s (17) Communication ability 37
-:% (25) Sense of fulfilment, sense of achievement 36
z (41) Ability to debug PHP programs 39
: (55) Knowledge of programming techniques 38
-“g’ (26) Ability to solve problems 40
= (14) Ability to speak and explain things to others in an easy—to—understand manner 41
< (40) Ability to express ideas with PHP 44
= (30) Interest in and curiosity about this field 40
-(E (19) Ability to appropriately evaluate other people’s thoughts 39
43 _§ XS (20) Ability to correct and improve on one’s own thoughts 40
§ ;0 i (46) Ability to read other student’ s programs 37| 194
2 5 -
E g 2 (47) Ability to read other people’ s reports 39
=] % §_ (45) Ability to understand other people’ s ideas 39
(21) Ability to pursue matters deeply, ability to explore matters 34
(48) Ability to express personal ideas using a computer 39
(29) Creativity/ability to create 35
(53) Knowledge of basic algorithms 38
42 (27) Ability to construct and create knowledge 41
“E’ (28) Ability to think, consider and come up with ideas by oneself 38
& (34) Desire to try problems 41
é (49) Ability to collaborate on problems 39
2 (33) Desire to learn about programming 38
SD (43) Ability to work to improve a program 39 763
E (23) Ability to cooperate with others, ability to study in cooperation with others 35
o (42) Ability to configure test data 37
_z (15) Ability to make presentations 37
§ (16) Ability to listen to what people are saying and ability to ask people questions 39
] (22) Ability to execute, ability to practice, ability to put into action 42
@ (51) Ability to keep working on a problem until it is finished 40
3 (12) Ability to express thoughts in writing 42
B (44) Ability to write reports about programs 36
<_ (13) Ability to express thoughts through media other than writing 37
P (50) Desire to learn about programming through problems positively 36
Total 22242224

©The Author(s) 2015. This article is published with open access by the GSTF

32

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

2) Activity Categories

The same cross-tabulation table was also analyzed by
cluster analysis with Ward’s method in the opposite direction
from the previous section, using activities as cases and
attitudes as variables, and the obtained dendrogram was then
used to classify activities into Clusters 1 through 4 as shown in
TABLE III. Group 1 comprised ten activities: “19. Asking the
professor questions about program creation assignments,” “20.
Asking the TA questions about program creation
assignments,” “33. Other,” “30. Revising programs based on
peer review,” “26. Creating programs based on research,” “17.
Reading the message board,” “24. Thinking about
specifications for independent projects,” “23. Doing research
about what to include in programs to be created,” “18. Asking
about program creation assignments,” and “22. Deciding what
to include in programs to be created.” The number of times an
activity was listed ranged from 32 to 84 times. The most

frequently listed activities were 23, 26, and 30. Based on its
constituent items, Group 1 can be characterized as “I.
Activities related to research, revision, and asking questions.”
These activities were listed 560 times.

Group 2 comprised six activities: “05. Preparing,” “06.
Reviewing,” “10. Studying using practice problems,” “21.
Asking friends questions about program creation
assignments,” “03. Asking friends questions about lecture
topics,” and “07. Studying using the textbook.” The number of
times an activity was listed ranged from 98 to 210 times. The
most frequently listed activities included 7, 21, 3, 5, and 6.
Based on its constituent items, Group 2 can be characterized as
“2. Activities that involve studying with the textbook.” These
activities were listed 728 times. These six activities, when put
together, were about as helpful as “I1. Listening to lectures” in
Group 4.

TABLE III. NUMBER OF TIMES EACH ACTIVITY WAS LISTED

. F
Groups Activities ;:2: Sum
19. Asking the professor questions about program creation assignments 60
- 20. Asking the TA guestions about program creation assignments 62
2§ 33 Other 57
8 < 30. Revising programs based on peer review 64
2] A
% :g s 26. Creating programs based on research 73 560
; § 4 117. Reading the message board 46
;S = % 24. Thinking about specifications for independent projects 46
% % oo 123. Doing research about what to include in programs to be created 84
< 2 _% 18. Asking about program creation assignments 32
- £ & 2 Deciding what to include in programs to be created 36
—
E o 2 05. Preparing 104
*; %‘ g 06. Reviewing 102
:3 43 8 110. Studying using practice problems 98 728
3 o g 21. Asking friends questions about program creation assignments 108
2 T>> S 03. Asking friends questions about lecture topics 106
o .£ 2 07. Studying using the textbook 210
14. Using Excel 32
12 .
_S 5 15. Using Word 15
‘g’ f,o 16. Writing on the message board 17
2w 27. Summarizing created programs with reports 12
g -é 04. Asking the professor about lecture topics 12
2 3 29. Running other people’ s programs and evaluating them 8
‘5 O
g S 25. Revising design specifications for independent projects 6
9 © 32. Evaluating abilities and attitudes 9
> c 231
9 © 02. Getting a broad understanding of the lecture 17
2w
[%2] . . N .
E §, g 09. Evaluating in—class slides as a learning method 5
3 B & 11, Evaluating practice problems as a learning method 10
; ® g_ 13. Asking questions using e—mail 8
;3 @ o |08. Learning using class slides 12
% E % 31. Revising programs while referencing other people’ s programs 24
< , 9 i12. Studying for the final exam 25
« ® 21928 Viewing and evaluating other people’ s programs 19
L »
o e . .
% S8 3 {01. Listening to lectures 705| 705
— w O
<+ £ °
Total 2224] 2224

33

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

Group 3 comprised 16 activities: “14. Using Excel,” “15.
Using Word,” “16. Writing on the message board,” “27.
Summarizing created programs with reports,” “04. Asking the
professor about lecture topics,” “29. Running other people’s
programs and evaluating them,” “25. Revising design
specifications for independent projects,” “32. Evaluating
abilities and attitudes,” “02. Getting a broad understanding of
the lecture,” “09. Evaluating in-class slides as a learning
method,” “11. Evaluating practice problems as a learning
method,” “13. Asking questions using e-learning,” “08.
Learning using class slides,” “31. Revising programs while
referencing other people’s programs,” “12. Studying for the
final exam,” and “28. Viewing and evaluating other people’s
programs.” The number of times an activity was listed ranged
from 5 to 32 times. The most frequently listed activities were
14, 12, and 31. Based on its constituent items, Group 3 can
becharacterized as 3. Activities that involve using
applications as well as studying and evaluating other people’s
programs.” These activities were listed 231 times. Although
Group 3 contained the largest number of activities, these
activities were listed the least frequently, indicating that these
activities had little influence on improving attitudes.

Group 4 consisted of one activity: “l. Listening to
lectures.” Therefore, Group 4 can be characterized as “4.
Listening to lectures.” This activity was listed 705 times. “1.
Listening to lectures” was the most listed item of all 33 items
by a considerable amount, indicating that it was the most
helpful activity.

B. Results from Analysis of Activities that Help to Improve
Attitude

The cross-tabulation table of attitude and activities was 55
rows by 33 columns. The number of times activities were
listed in each cluster obtained in the above section was totaled,
and results are shown on the upper-left side of TABLE IV.
Chi-square tests were performed using this table as a 4 x 4
contingency table. This showed that there was a significant
bias regarding the number of times activities were listed (2 (9)
=62.5, p <.001). Results from residual analysis are shown on
the lower-left side of TABLE IV. Cells that contained
statistically significant values with positive residuals are
indicated with an asterisk (*¥) on the bottom-right side of
TABLE IV. This analysis revealed that the activity “I.
Studying and asking friend questions” was helpful in
improving “IV. Attitude toward working on problems.”

“2. Activities that involve studying with the textbook”
were helpful in improving “I. Understanding of computers and
ability to systematically set tasks.”

“3. Activities that involve using applications as well as
studying and evaluating other people’s programs” were helpful
in improving “IIl. Attitudes toward evaluating other people’s
work.”

“4. Listening to lectures” was helpful in improving “II.
Attitudes toward programming techniques.”

TABLE IV. CHI-SQUARE ANALYSIS OF CROSS-TABULATION OF ATTITUDE AND ACTIVITY CLUSTERS

Observed frequency Expected frequency
- e
s £ S8 s £ S s
o g » < S v 3 W &
o &5 2 % § & o & 2 s § &
7 =1 » S5 3 o 7 =1 » S5 3 o
o o) o o)
82 2h, 8y 2hy
. 28 & % S 2 a2 ¢ = 28 & % s 2 o @
Groups of attitudes and activities 5 w2 > % o S < > > ® o 3
c c = o =) [} o W ¢ c = o +
Q € i= « = ©0 A o [Q € i « i o o o
§ % 558 =5 O T % 588> 2
e s 585 82 39 e s 585 gL 3
o 20 Xio s 0 o 20 Xio o s 0
QO Fi0 8 0 c c 0 g0 8 0 c o ¢
E=R = 2 o ¢ ¢ = =} S 6 ¢ ¢
> <. 3258 5 3§ 3 <3238 5 &
< 0 B2 5 9 9 ® + < 0 B 5 2 9 w© +
O ‘G o 0o O 5 R O ‘G | © O O 5
< 3 i< S < 3 T; | < 3 i< S < o T; -
~ Piad T8 & B ¥ ~ Piad T § 3 <
L Undersfcandlng of computers and ability to 90 174 43 118 425| 1070 | 1391 441 | 1347
systematically set tasks
II. Attitudes toward programming techniques 216 259 71 296 842(212.0 275.6 87.5 ! 266.9
I1I. Attitudes toward evaluating other people’ s work 34 57 45 58 194| 48.8 63.5 20.2 61.5
IV. Attitudes toward working on assignments 220 238 72 233 763[192.1 | 249.8 79.3 1 241.9
Total 560 728 231 705] 2224| 560.0 | 728.0 231.0 | 705.0
Adjusted residual Significance probability
L Undersfcandlng of computers and ability to 21 40 ~0.2 19 ok
systematically set tasks
II. Attitudes toward programming techniques 0.4 -1.5 =24 2.7 *k
II. Attitudes toward evaluating other people’ s work -2.6 -1.0 6.1 -0.6 *okk
IV. Attitudes toward working on assignments 2.9 -1.1 -1.1 -0.9 *ok

34

#**x p< 001, ** p<.01

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

C. Principal Component Analysis of Attitudes

Students were grouped based on improvement in attitude
scores. In order to determine the characteristics of each factor
and each group, attitude improvement as calculated from the
difference between pre- and post-course scores for the 25 items
(31) to (55) related to programming as listed in TABLE V was
used to perform principal component analysis using a
variance-covariance matrix. The loadings of principal
components 1 and 2 were 63.4% and 8.8%, respectively. Their
combined loading was 72.2%. TABLE V shows each
evaluated item for Component 1 of the component matrix in
descending order by the size of the coefficient.

The coefficients for evaluated items for Component 1
ranged from 0.89 to 0.59, indicating that this variable
integrates all items. Based on this, Component 1 was named
“general abilities required for programming.” For Component
2, items such as “(44) Ability to write reports about programs”
“(47) Ability to read other people’s reports,” “(48) Ability to
express personal ideas using a computer,” and “(54)
Knowledge of correcting program errors” had large positive
coefficients, whereas items such as “(31) Interest in
programming,” “(33) Desire to learn about programming,”
“(32) Knowledge of programming,” “(35) Ability to think
about a problem in stages,” and “(49) Ability to collaborate on
problems” had large negative coefficients. Therefore, the items
with a positive tendency were named “ability to read reports”
and the items with a negative tendency were named “interest in
and motivation for programming.” Attitude scores for
programming-related items can be explained by these two
components.

TABLE V. FACTOR MATRIX COEFFICIENTS FOR ATTITUDES
TOWARD PROGRAMMING

5 . Compo—iCompo—

Attitude items nent 11 nent 2

(50) Desire to learn about programming through problems_positively 0.89: -0.16
(38) Ability to review the flow of an algorithm 0.88 0.11
(35) Ability to think about a problem in stages 0.87: -0.36
(36) Ability to express an idea as an algorithm 0.87: -0.09
(49) Ability to collaborate on problems 0.87; -0.33
(46) Ability to read other student’ s programs 0.86 0.10
(54) Knowledge of correcting program errors 0.85 0.29
(37)_Ability to think about algorithms 0.85 0.05
(40) Ability to express ideas with PHP 0.84 0.00
(34) Desire to try problems 0.81 -0.09
(55) Knowledge of programming technigues 0.79 0.05
(39) Ability to improve algorithms 0.79 0.10
(47) Ability to read other people’ s reports 0.78 0.39
(41) Ability to debug PHP programs 0.78 0.05
(53) Knowledge of basic algorithms 0.78 0.28
(52) Knowledge of PHP syntax 0.78: -0.03
(43) Ability to work to improve a program 0.77 0.06
(51) Ability to keep working on_a problem until it is finished 0.77: -0.23
(33) Desire to learn about programming 0.77: -0.42
(45) Ability to understand other people’ s ideas 0.76 0.21
(48) Ability to express personal ideas using a computer 0.76 0.29
(32) Knowledge of programming 0.74; -0.37
(44) Ability to write reports about programs 0.73 0.50
(42) Ability to configure test data 0.71 0.48
(31) Interest in programming 0.59; -0.67

D. C(lassification of Students Based on Principal
Components of Attitude Scores

The principal component scores calculated in Section IIIC
for attitude score improvement were used as variables in
cluster analysis. The 24 students included in the analysis were
categorized into four clusters (groups). The four groups are
listed in Figure 1 along with their scores for principal
components 1 and 2.

35

Group 1 (G1, indicated with unfilled circles) comprised the
four students on the far right. Their mean score was 4.1, which
was the highest score of all four groups. They had the strongest
general abilities required for programming. This group had the
highest mean scores for all items and their abilities related to
programming improved the most overall.

Group 2 (G2, indicated with squares) comprised the seven
students to the right of the middle. Their mean overall score
was 2.1 and their mean scores for individual items ranged from
-0.1 to 4.7. They had the second highest mean score of all four
groups. In this group, improvement of 2 points or more was
seen for the following 15 items: “(36) Ability to express an
idea as an algorithm,” “(37) Ability to think about algorithms,”
“(38) Ability to review the flow of an algorithm,” “(39) Ability
to improve algorithms,” “(40) Ability to express ideas with
PHP,” “(41) Ability to debug PHP programs,” “(42) Ability to
configure test data,” “(43) Ability to work to improve a
program,” “(44) Ability to write reports about programs,”
“(46) Ability to read other people’s programs,” “(47) Ability to
read other people’s reports,” “(48) Ability to express personal
ideas using a computer,” “(52) Knowledge of PHP syntax,”
“(54) Knowledge of correcting program errors,” and “(55)
Knowledge of programming techniques.” An additional four
items had scores higher than the overall mean score of 1.2.

Group 3 (G3, indicated with triangles) comprised the nine
students to the left of the middle. Their mean overall score was
0.63 and their mean scores for individual items ranged from -
1.5 to 2.7. The mean score of this group was lower than the
overall mean and they did not improve very much.
Improvement of 2 points or more was seen for the following
five items: “42. Ability to configure test data” (m=2.7), “40.
Ability to express ideas with PHP” (m=2.5), “(52) Knowledge
of PHP syntax” (m=2.3), “(41) Ability to debug PHP
programs” (m=2.3), and “(47) Ability to read other people’s
reports” (m=2.3). This indicates that their abilities related to
PHP programs improved considerably. An additional five
items had scores higher than the overall mean score of 1.2.

5

programming

rxr]i

Ability to read reports! Interest in and motivation for

3

T 13 T T
<1 g H 2

o]

General abilities required for programming

Figure 1. The four student groups shown level with the two components.

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

Group 4 (G4, indicated with filled circles) comprised the
four students on the far left. Their mean overall score was 1.8
and their mean scores for individual items ranged from -3.3 to
-1.5. This group had negative mean scores for all items and
their programming abilities declined the most overall after the
course. Their “(34) Desire to try problems” was particularly
low and it appears that these students may have lost
enthusiasm because problems were difficult for them.

E. Identification of Important Items in Each Group with
Discriminant Analysis

Discriminant analysis was performed using improvement in
scores to identify important items in each group.

1) Attitude Items that Contributed to Discrimination

Discriminant analysis of improvements in attitude scores
for each group revealed three discriminant functions with
respective eigenvalues of 62.6, 28.2, and 3.0. Two of these
discriminant functions contained 96.8% of the information
volume and thus standardized canonical discriminant function
coefficients were based off of these two functions. For
Discriminant Function 1, items with a large positive
standardized canonical discriminant function coefficient were
attitudes toward “(32) Knowledge of programming,” “(40)
Ability to express ideas with PHP,” “(34) Desire to try
problems,” “(37) Ability to think about algorithms,” “(50)
Ability to proactively work on problems,” “(43) Ability to
work to improve a program,” and “(45) Ability to understand
other people’s ideas.” These abilities are directly related to
creating a program. Items with a large negative canonical
discriminant function coefficient were attitudes toward “(31)
Interest in programming,” “(35) Ability to think about a
problem in stages,” “(38) Ability to review the flow of an
algorithm,” “(44) Ability to write reports about programs,”
“(41) Ability to debug PHP programs,” and “(33) Desire to
learn about programming.” These abilities are important for
creating a program. Furthermore, attitudes toward these items
greatly contributed to discrimination.

For Discriminant Function 2, items with a large positive
standardized canonical discriminant function coefficient were
attitudes toward “(35) Ability to think about a problem in
stages,” “(39) Ability to improve algorithms,” “(44) Ability to
write reports about programs,” “(46) Ability to read other
people’s programs,” “(31) Interest in programming,” “(41)
Ability to debug PHP programs,” and “(33) Desire to learn
about programming.” These are ability necessary back and
forth of programming. Items with a large negative coefficient
were attitudes toward “(32) Knowledge of programming,”
“(34) Desire to try problems,” “(47) Ability to read other
people’s reports,” “(50) Ability to proactively work on
problems,” “(40) Ability to express ideas with PHP,” “(49)
Ability to collaborate on problems,” “(38) Ability to review
the flow of an algorithm,” and “(42) Ability to configure test
data.” These are ability to be necessary when programming.
Attitudes toward these items greatly contributed to
discrimination.

2) Important Attitude Items in Each Group

For Group Gl1, coefficients for Fischer’s linear discriminant
function for all 25 items as calculated in the previous section
were larger than the overall mean. This indicates that all

36

abilities required for programming were important to the
students in Group G1. Thus, it is clear that the students in
Group G1 were enthusiastic about programming in general.

The coefficients of five items (42, 44, 47, 48, and 52) in
Group G2 were higher than the overall mean. This indicates
that abilities such as writing and reading reports, understanding
syntax, and expressing ideas on a computer were important to
the students in Group G2 and that these abilities improved in
this group.

The coefficients of all 24 items in Group G3 excluding “45.
Ability to understand other people’s ideas” were higher than
the overall mean. This indicates that all abilities required for
programming were important to the students in Group G3,
similarly to the students in Group G1. Thus, it is clear that the
students in Group G3 were also enthusiastic about
programming in general.

No items in Group G4 had coefficients higher than the
overall mean, indicating that there were no important items.
Thus, it is clear that the students in Group G4 were not very
enthusiastic about programming.

IV. DISCUSSION
A. Helpful Activities for Improving Attitude

In Section A in Chapter III, which outlined helpful
activities, activities in “l. Studying and asking friends
questions” were reported as helpful in improving “IV.
Attitudes toward working on problems.” This first group of
activities consisted of items such as “23. Doing research about
what to include in programs to be created,” “26. Creating
programs based on research,” and “30. Revising programs
based on peer review.” This signifies that activities such as
doing research about assigned problems, asking the professor
or TA about problems, and creating and revising programs
were helpful for solving problems.

“2. Activities that involve studying with the textbook”
were helpful in improving “I. Understanding of computers and
ability to systematically set tasks.” This second group of
activities consisted of “07. Studying using the textbook,” “21.
Asking friends questions about program creation
assignments,” “03. Asking friends questions about lecture
topics,” “05. Preparing,” “06. Reviewing,” and “10. Studying
using practice problems.” This signifies that activities such as
studying the textbook and practice problems, asking friends
about assignments, preparing and reviewing, and deepening
programming knowledge were helpful for improving students’
ability to systematically set tasks.

“3. Activities that involve using applications as well as
studying and evaluating other people’s programs” were helpful
in improving “IIl. Attitudes toward evaluating other people’s
work.” This third group of activities consisted of items such as
“14. Using Excel,” “31. Revising programs while referencing
other people’s programs,” and “12. Studying for the final
exam.” This signifies that activities such as using Excel or
Word, revising and evaluating programs and specifications,
and studying for the final exam were helpful in improving
students’ ability to evaluate and revise programs and reports.

©The Author(s) 2015. This article is published with open access by the GSTF

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

“4. Listening to lectures” was helpful in improving “IL
Attitudes toward programming techniques.” Essentially, this
means that listening to lectures was helpful in improving
students’ knowledge of algorithms, their knowledge of and
interest in programming, their ability to express ideas with
PHP, and their knowledge of correcting errors.

B. Classification of Students Based on Principal Component
Analysis of Attitudes

The principal component scores calculated in Section D in
Chapter III were used as variables in cluster analysis of
attitude score improvement and the 24 students included in the
analysis were categorized into four clusters (groups). In order
to identify the characteristics of each group, the mean and
standard deviation of attitude scores for programming abilities
and general abilities were calculated as shown in TABLE VL

Analysis with ANOVA showed that attitude scores for the
four groups were significant (F (599) = 207.9%** p < .001).
Multiple comparison with the Bonferroni method revealed
significant differences for all comparisons. Based on these
analyzes, it was found that the mean scores for groups 1
through 4 (m1, m2, m3, m4) were related as follows: m1 > m3
> m2 > m4. Thus, there were differences in programming
abilities between the four groups, and, as also shown in Figure
1, differences between general abilities and abilities required
for programming. These results suggest that in order to
improve students’ abilities further, there is a need to consider
adjusting teaching methods for each group.

Principal component 1, "General abilities required for
programming,” is taken on the horizontal axis. "Ability to
write a report" is taken on the plus direction of the vertical
axis. "Interest in and motivation for programming" is taken on
the minus direction of the vertical axis. The student was able to
be classified in four groups as shown in Figure 1. Particularly,
it is visually recognized that four groups are classified by the
principal component 1 with predominantly big eigenvalue
from Figure 1. A rating level of attitude relating to the
programming and the general attitude is in order of student
group G1, G2, G3, and G4 as shown in Table 10. It is revealed
that the four groups were different in attitude.

In addition, the difference in four groups is recognized by
the result of the following discriminant analysis. Student group
G1 and G2 are generally highly motivated to programming.
Student group G3 is the group which "ability to write a report,
grammar knowledge, and ability to realize their ideas in the
computer”" have improved. Student group G4 has not items
with greater rating value than the average of the total and is not
very ambitious.

TABLE VI. MEAN ATTITUDE SCORES FOR THE TWO TYPES OF
ABILITY IN EACH GROUP

Attitude scores for | Attitude scores for
No. of . . (s
Group students programming abilities; general abilities

m SD m SD

1 4 4.1 1.4 3.5 1.7

2 7 2.1 1.0 1.2 1.0

3 9 0.6 2.0 -0.3 2.0

4 4 -1.8 1.5 -1.5 2.0
m 1.2 0.9 0.6 04

V. CONCLUSIONS

Students were taught with lectures and exercises, reviewed
concepts with lecture slides on an e-learning site, and
submitted assignments as part of programming education at a
university. Students' attitudes and their activities useful for
improving them were assessed with surveys conducted before
and after the course. Attitudes and their activities useful were
analyzed with Chi-square tests and residual analysis. Attitudes
related to programming were analyzed with principal
component analysis and discriminant analysis.

The following was found after conducting the course. These
findings could also be a useful resource for other courses.

(1) The activity “1. Studying and asking friend questions”
was helpful in improving “IV. Attitude toward working on
problems.” The activity “2. Activities that involve studying
with the textbook” were helpful in improving L
Understanding of computers and ability to systematically set
tasks.” The activity “3. Activities that involve using
applications as well as studying and evaluating other people’s
programs” were helpful in improving “IIl. Attitudes toward
evaluating other people’s work.” The activity “4. Listening to
lectures” was helpful in improving “II. Attitudes toward
programming techniques.”

(2) The students were categorized into four groups using
the principal component scores as variables. The following
four groups were found: group G1 who had the highest mean
scores for all items and their abilities related to programming
improved the most overall; group G2 who had the second
highest mean score of all four groups; group G3 who had
lower mean score than the overall mean and did not improve
very much; group G4 whose programming abilities declined
the most overall after the course.

(3) The following was lead from important attitude items in
each student group: group G1 and G2 were enthusiastic about
programming in general; group G3 improved only some
abilities such as writing and reading reports; group G4 were
not very enthusiastic about programming.

(4) There were differences in the general abilities required
for programming between the four student groups obtained
from cluster analysis with principal component scores as the
variables, indicating the need to consider ways to adjust
teaching methods to fit each type of student.

As a future challenge, the author of this paper would like to
study how to apply the findings of this study to his teaching.

ACKNOWLEDGMENT

The author appreciates the support of the Grant-in-Aid for
Scientific Research, foundation study (C25350364) provided
by the Ministry of Education, Culture, Sports, Science and
Technology, Japan for this research. The author would like to
express my appreciation to the students who were surveyed
and who helped me collect educational information.

©The Author(s) 2015. This article is published with open access by the GSTF

(1]
[2]

[3]

[4]

[3]

(6]

(7]

(8]

B

[10]

[11]

[12]

GSTF Journal on Education (JEd) Vol.3 No.1, September 2015

REFERENCES
Anku, Illustrated Book of PHP, Shoeisha, Tokyo, Japan, 2011.

J. Bersin, The Blended Learning Book: Best Practices, Proven
Methodologies, and Lessons Learned. John Wiley & Sons, Inc., San
Francisco, USA, 2004.

I. Miyaji, and K. Yoshida, “The practice and learning effect of
education by blending of lecture and e-learning,” Transactions of
Japanese Society for Information and Systems in Education, Vol.22,
No.4, pp.230-239, 2005.

I. Miyaji, K. Yoshida, and Y. Naruse, “The effects of blending e-
learning and lectures utilizing a structured notebook,” Transactions of
Japanese Society for Information and Systems in Education, Vol.4,
No.3, pp.208-215, 2007.

1. Miyaji, “Effects on blended class which incorporates e-learning inside
the classroom,” E-learn2009, The 20th World Conference on E-
Learning in Corporate, Government, Healthcare & Higher Education,
pp-1818-1826, Vancouver, Canada, 2009.

1. Miyaji, (Ed.), Toward Blended Learning from E-learning, Kyouritu-
Shuppan, Tokyo, Japan, 2009.

1. Miyaji, “Comparison between effects in two blended classes which e-
learning is used inside and outside classroom,” US-China Education
Review, USA, Vol.8, No.4, pp.468-481, 2011.

I. Miyaji, “ Consciousness and recognition degree of terms in
programming through blended classes,” Proceedings of Japanese
Society for Science Education, Chugoku Branch Symposium ” Toward
Blended Learning from E-learning (part 5), pp.24-28,2013.

I. Miyaji, and K. Yoshida, “Improvement of the attitudes and their
familiarity with terminology of a programming course with a blended
learning structure,” Proceedings of the Canada International Conference
on Education, CICE 2014, pp.301-307, Sydney, Canada, 2014.

I. Miyaji and K. Yoshida, “Categories of attitude and student
determined by cluster analysis of the attitudes toward programming
abilities in a blended class,” International Journal Cross-Disciplinary
Subjects in Education (IICDSE), Vol.5, Issue 4, pp.1845-1853, 2014.

J. Shinkai, and 1. Miyaji, “Effects of blended instruction on C
programming education, ” Transactions of Japanese Society for
Information and Systems in Education, Vol.28, No.2, pp.151-162,
2011.

E. Takaoka, and W. Ishii, “Fully e-learning Java programming course:
Design, development and assessment,” Transactions of Japanese
Society for Information and Systems in Education, Vol.25, No.2,
pp-214-225,2008.

38

AUTHOR’S PROFILE

Dr. Isao Miyaji received the B.S. and M.S. degrees from Okayama
University in 1969 and 1971, and the Ph.D. in Engineering from Kyoto
University in 1984. Since 1993 he has been a Professor with Faculty and
Graduate School of Informatics, Okayama University of Science, Japan.
He had a visiting Research Associate at Kyoto University at 1975, and at
University of Minnesota and University of California Barkley, USA at
1981. His current interests are in blended learning and improvement of the
instruction technique by using ICT. He received Best Paper Award from
LICE 2013 and Achievement Award from Chugoku Branch of JSSE.

©The Author(s) 2015. This article is published with open access by the GSTF

