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Abstract— A displacement-based multi-layered zig-zag plate 

model with variable in-plane and through-the-thickness 

representation and fixed degrees of freedom is developed for 

analysis of bonded joints with laminated adherents. 

Characteristic feature, the in-plane representation can be varied 

across the adherents and the overlap to better simulate the 

variation of solutions and to satisfy the stress boundary conditions 

at the ends of the overlap. To this purpose, continuity functions 

are incorporated enabling the continuity of displacements and 

stresses where the representation is changed. Other continuity 

functions are included to allow an a priori fulfillment of the out-

of-plane stress contact conditions at the interfaces of adjacent 

layers. High-order, through-the-thickness contributions are 

incorporated allowing the representation to be refined where step 

gradients rise. As the representation can vary from point to point, 

the present model permits an accurate analysis of laminates with 

general boundary conditions and of bonded joints under a unified 

approach. Applications are presented to sample cases of single- 

and double-lap joints taken from the literature. Specifically, three 

single-lap joints are considered, two of which with aluminum 

adherents and one with laminated composite adherents. Also a 

double-lap joint with aluminum adherents is analyzed. The 

numerical results show that accurate stress predictions are 

obtained with a low computational effort in all the cases 

considered using appropriate series expansions of displacements. 

The accuracy is good even using a single component in the 

expansion, which implies solving a 3x3 system. 

 
Index Terms— bonded joints; fixed d.o.f.; high-order hierarchic 

representation; zig-zag model 

 

I. INTRODUCTION 

ONDED joints are characterized by improved 

accommodation of thermal expansion mismatch and 

hygrothermal swelling, improved vibration isolation and 

sealing with respect to traditional mechanical fastening. In 

addition, adhesive bonding gives a gradual transfer of load 

between the structural elements and, therefore, a more uniform 

stress distribution within the joint, which can thus have better 

strength and an improved fatigue life. On the contrary, bolted/  
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riveted joints can determine the growth of strong stress 

concentrations, as a consequence of the material 

discontinuities that characterize the construction. Bonding also 

offers better aerodynamic capabilities and better aesthetic 

appearance, along with reduced tooling and machinery costs 

and improved manufacturability.  

All these aspects have contributed to the spread of bonded 

joints in many engineering fields. In addition, as claimed by 

Her [1], adhesive bonding is the best technology for joining 

composites, since these materials can suffer from catastrophic 

microstructural failures in service, which can be triggered off 

by the stress concentrations due to mechanical fastening. 

The behavior of bonded joints requires in many cases to be 

simulated taking into consideration stress boundary conditions 

in a point form, material and geometric nonlinearity and finally 

to accurately model the out-of-plane stress and strain fields. 

Without paying attention to these aspects, the joint strength 

could not be accurately predicted, thus preventing from the 

design of safe bonded structures. The comprehensive literature 

reviews by Vinson [2], He [3] and da Silva et al. [4] bears 

witness to the interest that the fully understanding of the 

behavior of bonded joints has aroused within the researchers. 

In details, the evaluation of the stress and strain fields across 

the joint and how they are influenced by geometry, materials, 

loading conditions, temperature and moisture effects represent 

the main topics addressed. 

As a corroboration of the complexity to simulate the 

behavior of bonded joints, it is underlined that, even when the 

adherents and the adhesive materials are considered as 

isotropic and homogeneous, analytical [5]-[7], finite element 

[8]-[10] and finite difference [11] solutions predict intricate 

stress and deformation fields. This is a consequence of the 

differences between the elastic moduli of adhesive and 

adherents and of the enforcement of stress boundary and 

loading conditions. In fact, the progressive reduction of the 

strain in the adherents along the overlap and the continuity of 

the adhesive/adherents interface determine non-uniform shear 

strain and stress distributions in the adhesive layer. In addition, 

the out-of plane transverse shear and normal stresses in single- 

(SLJ) and double-lap (DLJ) bonded joints reach a peak close 

to the edges of the bonding layer, which can determine a 

premature failure of the joint during the service life. As shown, 

e.g., by Nemes and Lachaud [12], the peeling stress can 

become the dominant effects at the edges, since it can be larger 
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than the shear stress. Non classical problems, such as complex 

loading schemes and the damage formation have been also 

treated during years. As examples, the paper by Sayman et al. 

[13] dealing with joint undergoing impact loading and that by 

Kim [14] dealing with interface crack in a single lap joint are 

cited. A number of approaches aimed at improving the 

performances of bonded joints have been suggested. For 

instance, da Silva and Adams [15] proposed a technique based 

on internal taper and adhesive fillet arrangement to reduce the 

peel stress, while Quaresimin and Ricotta [16] proved that that 

the fatigue strength can be improved adopting long overlap 

length and spew fillet corner geometry.  

Finite element methods are extensively employed for 

simulating the behavior of joints since they can carry out 

analysis of complex joint geometries and complex material 

models including nonlinear effects, without setting any 

simplifying assumption, which could affect accuracy. As finite 

element analyses (FEA) require large computing time and 

quite long preparation, analytical models (AM) based on 

simplifying assumptions are often used as alternatives. He [3] 

and da Silva et al. [4] provide a thorough discussion of AM, 

and an assessment of their characteristics when studying joints. 

In order to obtain a fast, low cost solution in closed form, 

many AM are stress-based models, which still include some of 

the simplifying hypotheses of the pioneering models by 

Volkersen [17], Goland and Reissner [18] and Hart-Smith 

[19]. Therefore, many times, they assume a shear stress that is 

constant across the thickness of the adhesive, or they suppose 

that the adhesive can deform only in shear and the adherents 

are rigid, thus obtaining shear and peel stresses in the adhesive 

layer through the solution of a plane strain problem. 

As all these simplifying hypotheses can be far from reality, 

more detailed models have been proposed over the years 

trying to consider the effects due to the deformation of the 

adherents and of the adhesive. However some effects such as 

the stress-free boundary conditions at the ends of the overlap, 

or the bending effect due to the eccentric load path of SLJ and 

the deformability of adherents are still disregarded or 

accounted for with simplified techniques (see, e.g. [18] and 

[19]) in order to limit the computational effort. For instance, a 

transverse load factor and a bending load factor are calculated 

in order to relate the applied tensile load to the bending 

moment and to the transverse force at the ends of the overlap. 

In this way, it is possible to solve the nonlinear geometric 

problem as a linear problem applying bending and transverse 

loads in addition to the tensile load.  

It was only the advent of bonded laminated composites as 

primary structures in the 80’s that boosted the development of 

more complex AM together with an increasing number of 

three-dimensional (3-D) FEA. In fact, as outlined in Ref. [20], 

these kind of materials calls for an accurate simulation of the 

warping, shearing and straining deformations of the normal 

and out-of-plane stresses that rise as a consequence of the 

different mechanical properties of constituent layers and of the 

relatively poor out-of-plane moduli and strengths of the 

laminate construction. Diaz et al. [10] provides the full list of 

the most diffused finite element models and presents 3-D FEA 

of SLJ with CFRP adherents and epoxy adhesive. Pearson and 

Mottram [9] deals with 3-D FEA of the non-linear stiffness 

characteristics of adhesively bonded SLJ, while Andruet et al. 

[8] is cited as example of paper treating geometric 

nonlinearity. 

A first alternative to this approach is that of Xu and Li [10], 

which solved the 3-D differential governing equations of a 

tubular bonded joint through a finite- difference scheme. 

Another alternative is to employ refined analytical bonded 

joint models, whose complexity determines whether it is 

possible to obtain solutions in closed or numerical form. 

Gustafson et al. [5] and Radice and Vinson [7] exhaustively 

review these models. The approaches by Renton and Vinson 

[21] and Srinivas [22] are cited as examples accounting for the 

transverse shear and normal deformations of adhesive and 

adherents and satisfying the stress-free boundary conditions. 

Instead, the model by Allman [23] is an example, which 

considers the effects of bending, stretching and shearing in the 

adherents and the tearing actions in the adhesive. Even if 

refined AM with a complex representation cannot always 

obtain a closed form solution, as discussed by Adams and 

Mallick [24], they are not disadvantageous and unpractical 

compared to simpler models, since they reduce costs with 

respect to 3-D FEA without any accuracy loss. In addition, 

refined AM are not affected from the stress singularities at the 

edge interfaces like 3-D FEA. The paper by Yousefsani and 

Tahani [6] is mentioned as example of application of a 

modern, efficient and accurate stress-based layerwise plate 

theory to the analysis of DLJ. 

Within the framework of AM, the application of 

displacement-based models such as those by Mortensen and 

Thomsen [25], Zou et al. [26] and Yang and Pang [27] opens 

the possibility for the development of models that enable to 

carry out analyses of bonded joints and laminates under a 

unified approach. The advantages of this achievement are 

plain; in fact, it would enable the designers to perform realistic 

analysis of the structures in the bonded region and outside it 

contemporaneously and with the same tool. In addition, it is 

worthwhile to mention that the most widespread shell finite 

elements and analytical tools currently employed by the 

industries derive from displacement-based models. The above 

mentioned applications of Refs. [25], [26] and [27] employ the 

Classical Laminated Plate Theory (CLPT), or the First-Order 

Shear Deformation Plate Theory (FSDPT) to perform the 

analysis, even if the kinematics of these models cannot 

accurately describe the stress fields across the thickness of 

bonded materials with distinctly different mechanical 

properties. In fact, the adhesive peel stress is neglected in the 

constitutive equations and the transverse shear stress is 

disregarded or assumed constant across the thickness. 

Therefore, equilibrium is not satisfied at the interfaces and the 

stress free conditions at the end of the overlap are not met. 

However, despite these violations, the results can be in a good 
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agreement with those of finite element models, as shown e.g. 

in [27].  

From this brief discussion it seems evident the lack of 

refined displacement-based models that can be conveniently 

applied to the analysis of bonded joints as they can treat local 

and global scale problems with the same tool. Namely, bonded 

joints with laminated adherents can be analyzed with the same 

model used elsewhere. With the aim to contribute to fill this 

gap, the zig-zag plate model with variable kinematics and 

fixed number of functional degrees of freedom (d.o.f.) recently 

developed in Ref. [28], is here particularized to the analysis of 

bonded joints. As shown by the successful applications 

presented in Refs. [28] and [29], the model can easily satisfy 

any kind of boundary conditions thanks to a variable 

kinematics, however in order to fulfill the continuity 

conditions where the in-plane representation step-varies (e.g. 

between the adherent and the overlap) new contributions have 

to be added. Aiming at keeping as lower as possible the 

computational burden, the model has just five primary 

generalized displacement variables, the same as FSDPT, while 

all the expressions of high-order contributions and continuity 

functions are calculated apart in closed form as functions of 

the d.o.f. using a symbolic calculus tool. This ploy enables to 

overcome the intricacies of manipulating a rather complex and 

cumbersome algebra and to consistently speed-up 

computations, as a refinement of the model does not determine 

an increase of the memory storage dimension and of the 

processing time. 

The paper is structured as follows. First, the loading and 

boundary conditions requirements are discussed in order to 

explain the assumptions of the model. Then, numerical results 

aimed at showing the capabilities of the present model are 

shown. Applications are presented to sample cases for which 

the results by finite element analyses or by analytical models 

are available for comparisons. Finally, the performances of the 

present model are discussed and the pertinent conclusions are 

outlined.  

 

II. STRUCTURAL MODEL 

In order to put the article in the right perspective, a brief 

review about the model used for the analysis of joints and the 

requirements needed to accurately simulate their response is 

premised along with a discussion of the most widespread 

approach adopted to account for the layerwise effects that rise 

in multilayered structures. The readers can find more 

exhaustive discussions about these topics in the papers by da 

Silva et al. [4] and by Kapuria and Nath Error! Reference 

source not found.. 

The most widespread approach is that of stress based and 

mixed models, which assume the displacements separately 

from the stresses, adopting appropriate self-equilibrating 

representations which usually have a number of unknowns that 

increases with the number of physical or computational layers. 

This representation is extensively adopted, since it does not 

require complex algebraic manipulations to obtain stresses 

from strains, thus it is easy to develop. However this choice 

implies a high computational burden, because usually the 

unknowns depend on the number of layers. On the contrary, 

displacement-based models assume a representations that a 

priori fulfils the conditions on stresses, and thus it involve a 

fixed number of unknowns even though quite intricate 

algebraic operations are required to obtain closed form 

expressions of the high-order terms. Displacement-based 

models find many applications for the development of finite 

elements used in the analysis of composites, but they are 

infrequently adopted for studying joints, since the stress 

boundary conditions cannot be easily enforced.  

However, whatever the modelling approach chosen is, the 

analysis of joints requires to correctly describe out-of-plane 

stresses and to have the displacements continuous at the 

interfaces of the layers constituting the adherents and at the 

interfaces between adherents and bonding film. Accordingly, 

piecewise continuous functions with appropriate discontinuous 

derivatives at the layer interfaces should be employed to 

represent the displacements, in order to respect the equilibrium 

condition, which implies the fulfilment of the continuity 

requirements for out-of-plane stresses. As far as AM are 

concerned, it is mandatory to evaluate their performances at 

the light of accuracy and costs. Models with a variable number 

of d.o.f. generally provide better accuracy, as they can refine 

their representation in regions with step gradients. However, 

such models could have processing time and memory storage 

dimension too large for an extensive application in the 

industrial environment. On the other hand, the models with 

fixed d.o.f. are efficient but not always their accuracy is 

satisfactory as they adopt a too simplified modelling approach. 

In order to overcome this drawback, the model of Ref. [28], 

which is here particularized to the analysis of joints, adopts a 

variable kinematics whose terms are calculated apart once at a 

time as function of the d.o.f. that are the three displacements 

and the two rotations of the normal of the reference plane. 

Previous applications in Refs. Error! Reference source not 

found. and [29] showed that this model can accurately 

describe directly from constitutive equations the stress fields 

of laminates and sandwiches even when the variation of their 

mechanical properties is intricate. In the refined version for the 

analysis of joints here presented, a new set of continuity 

functions is added aiming at fulfilling the displacement and 

stress continuity conditions at the interfaces of the adjacent 

regions where the in-plane representation is varied moving 

over the plane of the joint. 

Like its previous version [28], the model is still based on a 

piecewise representation of displacements that includes a 

contribution with fixed expansion order across the thickness, 

contributions with a variable order of representation and 

finally contributions with piecewise variation across the 

thickness. It is reminded that the terms with variable order of 

representation are incorporated to enable the fulfilment of the 

equilibrium conditions and the boundary conditions prescribed 
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by the elasticity theory, while the contributions with piecewise 

variation across the thickness are aimed at a priori fulfilling 

the stress and displacement continuity conditions at the layer 

interfaces. 

As for the previous version [28], all the higher-order 

contributions and the continuity functions are calculated apart 

once at a time obtaining their expressions in terms of the 

functional d.o.f. with a symbolic calculus tool. In this way, the 

present model can refine the representation across the 

thickness just imposing the equilibrium conditions in more 

points, but keeping fixed the number of d.o.f. As a 

consequence, refinement can be obtained without increasing 

the memory storage dimension or the processing time, 

differently from finite element models and analytical models 

with a variable number of d.o.f. In fact, for instance, 3D FEA 

requires a very fine meshing for keeping a reasonable aspect 

ratio of solid elements across the thickness of the adhesive 

film, resulting into a large computational effort.  

It is also remarked that the present version of the model 

offers the possibility to perform analysis of laminates and of 

multi-layered bonded structures under a unified approach in 

which the in-plane representation can vary in a step way 

moving in the in-plane direction across the joint. 

For what concerns the analysis of bonded joints with 

laminated adherents, many times the solution of a multiple-

point boundary value problem is required. In this section, the 

imposed boundary conditions for studying joints are briefly 

summarized, while in Section 2.3.2, more specific details 

about the procedure adopted to obtain closed form relations 

through symbolic calculus are provided. Here, it is just 

reminded that by the viewpoint of the computation of the 

unknowns coefficients, imposing Eqs. (1) – (3) is equivalent to 

impose Eqs. (36) – (39).  

As far as the boundary conditions at the edges of the 

adherents and of the overlap regions are concerned, they are 

satisfied calculating appropriate expressions of the coefficients 

of higher-order contributions to displacements of Eqs. (10) – 

(12), as follows. Specifically, if one assumes that no variation 

occurs in the transverse direction y as customarily, the 

boundary conditions require that the transverse shear and the 

normal stresses should identically vanish over the free surface 

Ω1 and Ω2 of the overlap (see Figure 1). Thus it is possible to 

enforce the following relations to hold: 

;0;0;0     k xzxzxz dzdz
ki


 (1) 

;0;0;0   
 k xxxxxx dzdz

ki


 (2) 

if we want the satisfaction at a specific point across the 

thickness, in integral form over the surface Ωi or over all the 

sub-regions of Ωk and Ωi, respectively.  

In a similar way, the stresses can be imposed to be 

consistent with the applied loads 

;

;                 

;                    

i i
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Where N, M, Q are the in-plane, bending and shear 

resultants.  

As mentioned above, the in-plane representation of 

displacements is allowed to step-vary in the in-plane direction 

of the joint since different constraints should be satisfied in 

different regions, due to the change of geometry and material 

properties across the joint. In order to fulfil the appropriate 

continuity requirements at the in-plane interfaces, the 

continuity functions of Eqs. (20) – (22) are incorporated in the 

displacement field. In this way, the model can easily treat 

joints, which have a step-way variation of the trial functions 

(43) – (47) moving in the in-plane direction. The new set of 

continuity functions also enables to refine the representation of 

the model in the in-plane direction.  

A distinctive feature of the model [28] is represented by the 

possibility of enforcing a non-vanishing transverse shear at 

clamped edges even when the mid-plane displacements and 

shear rotations are forced to vanish. In this way, one of the 

drawback of the models with mid-plane displacements and 

shear rotations as functional d.o.f is overcome. Similarly, non-

vanishing stresses can be enforced, even when the trial 

functions for the displacements a priori fulfil the previous 

conditions of Eqs. (1) and (2), since in real adhesive joints a 

fillet of surplus adhesive, the so-called spew-fillet can be 

formed at the end of overlap zone allowing to transfer the 

shear stress.  

In addition, the model can be made consistent with a state of 

nonzero transverse normal stress with a nonzero bending strain 

in the thick regime and with a state of zero transverse shear 

stress in presence of nonzero bending strain in the thin regime. 

Finally it could be noticed that, any other condition enforced 

in the reference papers considered for comparisons can be 

easily fulfilled, as this only means a variation in the conditions 

employed to get appropriate closed form expressions of 

higher-order coefficients of displacements through symbolic 

calculus. 

A. Notations 

It is postulated the hypothesis that the overlap and the 

adherents can be treated as laminates. In order to take into 

consideration that the adherents may have a different number 

of layers, the structural model simulates the joint as a laminate 

whose number of layers is that of the overlap, as shown in 

Figure 1. As a consequence, bonded joints with laminated 

adherents are treated as plates with a different number of 

layers that has different material properties. Obviously, the 

properties of some layers of the adherents are assumed to 

vanish, because just the overlap has the whole set of layers. 

The plate reference surface is the middle surface Ω of the 
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overlap. The plate is considered to be made of N orthotropic 

layers, perfectly bonded together, with their principal material 

directions arbitrarily oriented and with material properties 

entirely different each other. The reference system adopted is a 

rectangular Cartesian reference frame (x, y, z) with (x, y) in Ω 

and z normal to it. The symbols (k)z+ and (k)z- indicates the 

position of the upper+ and lower - surfaces of the generic kth 

layer, while the superscript (k) is applied to all the quantities 

that belong to a generic layer k. The displacements in the x, y 

and z directions are indicated respectively as u, v and w. They 

are described as the sum of fixed contributions 
0Û , 

0V̂ , 

0Ŵ , high-order contributions 
hoÛ , 

hoV̂ , 
hoŴ  and 

piecewise contributions 
cÛ , 

cV̂ , 
cŴ , 

icÛ , 
icV̂ , 

icŴ  as 

discussed forward. The functional d.o.f. are the in-plane 

displacements of the points over the middle plane Ω u0 (x, y) 

and v0 (x, y), the transverse displacement w0 (x, y) and the 

shear rotations of the normal γx
0 (x, y), γy

0 (x, y) to these points. 

The strains are indicated as ε ij and the stresses as σ ij (i, j≡ x, y, 

z). 

Linear strains ε ij are assumed within the paper, but the 

effects of geometric nonlinearity are taken into consideration 

adopting the updated Lagrangian methodology, which 

computes the strains at each new loading step from the 

configuration at the previous step, instead of calculating them 

from the initial unloaded configuration. This approach is more 

numerically efficient than the standard Lagrangian approach, 

which calls for the application of nonlinear stress-strain 

relations and the solution of non-linear equations. 

B. Kinematics 

Four separated contributions are included in the through-

the-thickness variation of displacements across the thickness, 

which is postulated in the following general, piecewise form:  

   

   

0ˆ ˆ( , , ) , , , ,

ˆ ˆ, , , ,

ho

c ic

u x y z U x y z U x y z

U x y z U x y z

  

 
 (4) 

   

   

0ˆ ˆ( , , ) , , , ,

ˆ ˆ, , , ,

ho

c ic

v x y z V x y z V x y z

V x y z V x y z
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 
 (5) 

   

   

0ˆ ˆ( , , ) , , , ,

ˆ ˆ, , , ,

ho

c ic

w x y z W x y z W x y z

W x y z W x y z

  

 
 (6) 

The previous version [28] of the model already includes the 

first three contributions, which are ( )0, ( )ho and ( )c, while here 

in order to enable the analysis of adhesively bonded joints the 

new contributions ( )ic are added.  The terms with superscript 

0, which are here indicated as 
0

, have a polynomial 

representation with a fixed expansion order across the 

thickness. In details, they are: 

)),((),(),,(ˆ
,

0000
xx wyxzyxuzyxU  

 (7) 

)),((),(),,(ˆ
,

0000
yy wyxzyxvzyxV  

 (8) 

),(),,(ˆ 00 yxwzyxW   (9) 

These terms contain just the primary, starting contributions 

expressed in terms of the functional d.o.f., which are the same 

of FSDPT model.  

The terms 
ho

 with the superscript ho can vary from point 

to point across the thickness, therefore they allow obtaining a 

variable kinematics across the thickness. These terms are 

aimed at fulfilling any possible set of boundary conditions, 

since they provide a variable order of representation across the 

thickness. Specifically, the right expansion order can be set in 

any region, in order to have enough unknown coefficients to 

be determined enforcing the fulfilment of the prescribed 

boundary conditions at any point in the plane and across the 

thickness. Their expressions are postulated as follows: 

o

unu

ho zyxAzyxAzyxU ),(...),(),,(ˆ 2

2 
 (10) 

o

vnv

ho zyxAzyxAzyxV ),(...),(),,(ˆ 2

2 
 (11) 

o

wnw

ho zyxAzyxAzyxW ),(...),(),,(ˆ 
 (12) 

It is underlined that Eqs. (10) – (12) are valid only within a 

single physical or computational layer. Despite this, the 

functional d.o.f. of the present model are fixed, since the 

expressions of the terms 
ho

 are calculated apart once at a 

time as functions of the d.o.f. The aim of these terms is to 

obtain a variable representation from point to point across the 

thickness, so they are “adaptive” contributions that enable the 

model to be refined in the regions with step gradients and 

allow it to account for the variation of the material properties. 

As a consequence of their presence, the representation can 

adapt to the variation of solutions, thus getting accurate stress 

predictions directly from constitutive equations, even for thick 

structures with abruptly changing material properties. 

As mentioned above, the expressions of the terms in Eqs. 

(10) – (12) are computed enforcing the boundary conditions of 

the joint (Eqs. (1) – (3)), the stress-free boundary condition at 

the upper and lower bounding faces (Eqs. (36) – (39)) and, 

finally, the equilibrium conditions (Eqs. (40)) at specific points 

across the thickness. The enforcement of all these constraints 

determines cumbersome algebraic manipulations, which are 

here avoided carrying out these computations with a symbolic 

calculus tool, thus overcoming the main drawback of this kind 

of models.  

The function of the terms 
c

 with the superscript c is to a 

priori satisfy the continuity conditions as prescribed by the 

elasticity theory for keeping equilibrium at the interfaces 

between different layers. Their expressions are the following: 

 
 


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k

n
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k
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x
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Where Hk is the Heaviside unit step function that triggers 

the contribution of the continuity functions from the pertinent 

interface.  

The functions Φx
k, Φy

k are aimed at satisfying the continuity 

of the out-of-plane shear stresses 




z
xz

z
xz kk )()( || 

 (16) 




z
yz

z
yz kk )()( || 

 (17) 

Their presence is a common feature of all the zig-zag 

models and it makes the in-plane displacements continuous. As 

they produce appropriate discontinuous derivatives across the 

thickness, they determine an a priori fulfilment of the stress 

continuity conditions. 

Non classical feature, the transverse displacement embodies 

two zig-zag contributions Ψk, Ωk whose goal is to meet the 

stress contact conditions on the transverse normal stress and its 

gradient: 




z
z

z
z kk )()( || 

 (18) 




z
zz

z
zz kk )()( || ,, 

 (19) 

Eqs. (18) - (19), which are directly obtained from the local 

equilibrium equations, should be fulfilled since the transverse 

normal stress σz and the related strain εz have a central role for 

keeping equilibrium of bonded joints with laminated 

adherents. Finally, Cu
k, Cv

k and Cw
k make continuous the 

displacements at the points across the thickness where the 

representation is varied.  

The aim of last contributions 
ic

 is to enable the 

representation of the d.o.f. to be freely changed over the plane 

(x, y). In fact, these terms satisfy the displacement and stresses 

continuity conditions at the interfaces of adjacent regions 

across which the in-plane representation is varied in a step-way 

moving across the joint. This aspect is of primary importance, 

since the contributions 
0

 defined above can have an in-plane 

representation that changes moving along the in-plane 

coordinate of the joint. In fact, their trial functions can be 

different in order to fulfil specific boundary conditions in 

different regions. The terms 
ic

 are: 
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 (22) 

Once again, Hk activates the contribution of the continuity 

functions starting from the point where the in-plane 

representation varies. It could be underlined that this variation 

is not possible in both directions, but it can happen only in one 

(x or y). The goal of the terms of first order in the in-plane 

coordinate is to satisfy the continuity of the stresses, while the 

continuity of their gradient is fulfilled with the terms of second 

order in x.  

Similarly to the high order terms, the explicit expressions of 

the continuity functions are evaluated in closed form using a 

symbolic calculus tool, following the procedure outlined 

hereafter.  

C. Continuity functions and hierarchic terms 

The closed form expressions of the continuity functions and 

of the hierarchic contributions are obtained as follows. 

1) Continuity functions 

The displacement continuity functions Cu
k, Cv

k and Cw
k, 

which make continuous the displacements at the points across 

the thickness where the representation is varied, do not involve 

derivatives of the functional d.o.f. of any order, as it can be 

seen in a straightforward way enforcing the continuity of 

displacements at the interfaces of the regions where the 

representation is varied. Their expressions at a generic 

interface   are obtained directly as: 

     zyxUzyxUyxC ho

k
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k

k

u ,,ˆ,,ˆ),( 1  (23) 
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k
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k

k

v ,,ˆ,,ˆ),( 1  (24) 

     zyxWzyxWyxC ho

k

ho

k

k

w ,,ˆ,,ˆ),( 1  (25) 

The other continuity functions have more intricate 

expressions, however it is possible to notice that  Φx
k, Φy

k and 

Ψk contain first order derivatives of the functional d.o.f., 

whereas Ωk involves also second order derivatives of the 

functional d.o.f. In order to take into consideration these 

aspects, their expressions are assumed in the following form:  

    z
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x WWUU ,

0)(
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0)(

1
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hokk WWUU ,
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1
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    zz

hok

xx

hokk WWUU ,

0)(

18,

0)(

1
ˆˆ...ˆˆ    (29) 

Φu1
(k), …, Ω18

(k) are the so-called continuity coefficients, 

which depend only on the elastic properties of the constituent 

layers. They multiply derivatives of the displacements 

according to the following scheme: 
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The closed form expressions of the continuity coefficients 

are obtained embodying Eqs. (26) - (29) into the stress contact 

conditions and then solving the system with a symbolic 

calculus tool. To give an idea of the procedure, the solving 

system for a beam at the generic interface   between the 

layers q and q+1 is:  
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The expressions of the continuity functions are determined 

at any interface between physical or computational layers by 

solving this system. The procedure for plates is similar, but it 

is here omitted for sake of brevity.  

2) Hierarchic terms 

The high order coefficients are here referred as hierarchic 

terms, since they enable a variable representation in different 

regions across the thickness. To obtain their expressions first 

of all the fulfilment of the boundary conditions prescribed by 

the elasticity theory across the thickness should be enforced: 

0|0|  lxz

u

xz 
 (36) 

0|0|  lyz

u

yz 
 (37) 

llz
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z pp |||| 00  
 (38) 

0|0| ,,  lzz

u

zz 
 (39) 

(p0 represents the transverse distributed loading).  

In addition, it is also necessary to enforce the fulfilment of 

the local differential equilibrium equations:  

, , ,

, , ,

, , ,
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0
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x x xy y xz z

xy x y y yz z
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 (40) 

at various points across the thickness. Of course, the way 

chosen to subdivide the structures into computational layers 

determines the position of these points. In fact, the number of 
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points where the equilibrium condition should be enforced is 

np = Nlay ∙ ord_ip – 2, Nlay being the number of computational 

layers and ord_ip being the chosen order of expansion across 

the thickness for the in-plane displacements. The position of 

the np points is determined arbitrarily trying to fulfil the 

equilibrium condition (40) in all the points across the thickness 

of the structure, thus improving accuracy. However, the np 

points should not be placed excessively near to the interfaces, 

in order to avoid numerical problems (i.e. singular or badly 

scaled matrix). 

The system of equations obtained from the fulfilment of the 

boundary conditions and from the enforcement of the 

equilibrium equations (40) at chosen points across the 

thickness is again solved using a symbolic calculus tool. With 

this approach, it is possible to easily express the hierarchic 

terms 
ho

 as functions of the d.o.f., thus, on the contrary of 

the other models to date available it is possible to refine the 

solutions across the thickness without increasing the number of 

primary variables. For sake of clarity, hereafter, the generic 

expression of Eq. (40) at the point zp for a beam is reported: 
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As outlined previously, by the viewpoint of the computation 

of the unknowns coefficients, imposing Eqs. (1) – (3) is 

equivalent to impose Eqs. (35) – (39). Accordingly, the high-

order terms 
ho

 appearing in the expressions (10) - (12) are 

also employed to fulfil the boundary conditions of Eqs. (1) to 

(3) at the edges of the joint.  

The choice of evaluating apart once at a time in analytic 

form the expressions of the coefficients of displacements and 

of the continuity functions enables the present model to 

capture stress fields as accurate as 3-D models without any 

drawback, since its computational effort is equivalent to that of 

single layer models. This advantage was proven in [28], where 

the computational time of the model without the terms (20)-

(22), here introduced in order to treat bonded joints, was 

compared to that of a previous model with the same number of 

d.o.f. and equivalent kinematic relations. This previous model 

had the same memory occupation, but, instead of using 

symbolic calculus, all the relations were obtained in 

approximated numerical form. Therefore, Ref. [28] showed 

that the drawbacks of zig-zag models can be easily overcome 

obtaining in an automatic way closed form expressions of 

high-order terms and continuity functions, thus avoiding to 

perform cumbersome operations and speeding-up the solution. 

Accordingly, this approach is also employed in the present 

paper. 

As a general remark, it can be noticed that, even if the 

numerical results presented in Section 3.3 refer to reference 

cases taken from the literature that do not underline all the 

potentialities of the model, its validity is general, since it can 

accurately account for any stress variation. 

Finally, it could be underlined that, since the stresses 

continuity can be enforced as boundary conditions, the 

representation here proposed can be also adopted to develop 

finite elements with different representations but with 

compatible stresses. Unfortunately, a direct implementation of 

the present structural model involves derivatives of the 

displacements as nodal d.o.f. To avoid this drawback, it is 

possible to employ the strain energy updating technique 

(SEUPT) by Icardi and Ferrero [30], whose features are 

explained in the following section. 

D. Strain energy updating (SEUPT) 

An SEUPT, which can be easily implemented within standard 

finite elements computer codes, is a procedure that can 

improve the results of a preliminary finite element analysis 

(PFEA) with standard shear deformable plate elements, using 

the present structural model. To summarize, spline functions 

interpolate the results of the PFEA in the regions of interest, 

then this interpolation is employed to build an updated 

“analytical” solution, as outlined hereafter. 

Since differentiation, integration and any other operation 

necessary for computing the solution are performed with the 

spline interpolation instead of being carried out with the finite 

element interpolation functions, using SEUPT, no derivatives 

of displacements are involved as nodal d.o.f. Accordingly, the 

PFEA employs computationally efficient C0 shear deformable 

elements with the customary displacements and shear rotations 

as nodal d.o.f. and efficient linear or parabolic standard 

interpolating functions. Of course, attention should be paid in 

removing reduced integration, or better, the inconsistent 

spurious constraints from these elements, in order to avoid 

shear locking.  

One of the merits of SEUPT is that it enables to treat laminates 

with distinctly different properties of the constituent layers, 

strong anisotropy and loading/ boundary conditions of general 

interest using commercial finite element codes, whose 

accuracy is updated up to the level of refined AM. 

In the version of SEUPT used in this paper, two sets of 

updating operations are separately carried out over the strain 

energy and over the work of external forces. Please note that, 

as the adaptive model here employed is able to capture the 

interlaminar stresses directly from the constitutive equations, 

the updating procedure is faster than in [30] and no derivatives 

of the in-plane stresses are involved. 

A symbolic calculus tool is again employed to get the 

expressions of strain energy and of the work of external forces, 
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thus the energy balance is written in analytical form once at a 

time outside the solution process, speeding-up the 

computations. The following steps can be identified within the 

procedure. 

 

i) First, the overall rotations φx= γx
0 – z ∙ w0,x and φy= γy

0 – z ∙ 

w0,y used as functional d.o.f. by the finite elements in the 

PFEA phase are made consistent with the actual structural 

model. To this purpose, the contributions of γx
0, w0,x, γy

0 and 

w0,y are split from the spline interpolation of φx and φy. Next, 

the spline interpolation of 
0~u , 

0~v , 
0~w ,

0~
x  and

0~
y  are 

introduced into the expression of the strain energy. The 

purpose is to compute the corrective terms 
u ,

v , 
w , x  

and 
y

 
that make the solution 

uu 0~ , 
vv 0~ , 

ww 0~ , x

x

 0~
, 

y

y


 0~

 
consistent with the adaptive 

model, simply substituting into its energy balance the 

expressions of the updated displacement. 

A suitable choice of the set of interpolation points enables to 

easily overcome the ill-conditioning of the spline interpolation. 

As shown in Ref. Error! Reference source not found., 

accurate results can be obtained using a 4x4 interpolation 

scheme around the area of interest, which determines a third-

order approximation over each patch. If too many interpolation 

points are retained, oscillations can rise at the bounds of the 

sub-regions considered.  

 

ii) The next step requires to construct the energy balance in 

order to evaluate the contributions 
u ,

v , 
w , x  and 

y .  

First only the correction x  is incorporated in the energy 

balance, assuming all the other corrections to vanish. The work 

of the external forces is updated in a similar way substituting 

the expressions of the updated displacement d.o.f. Once the 

first approximate x  is computed from the energy balance, it 

is employed to evaluate 
y  in a similar way postulating that 

all the other corrections still vanish. The solution to this and 

the following steps is obtained using the Penalty Function 

Method.  

 

iii) Since it is expected that even the FSDPT model can quite 

accurately describe the membrane energy, the in-plane 

displacements will not vary so much applying SEUPT. 

However, x  and 
y  computed by updating the transverse 

shear energy, as described above, are adopted to improve the 

membrane energy, aiming at computing 
u ,

v  and 
w  from 

the energy balance. Again, each correction is assumed one by 

one, starting with the computation of 
u

 
 and assuming the 

remaining ones to vanish. The approximate expression of 
u  

computed by the energy balance is used to evaluate an 

approximate expression of 
v  and both expressions of 

u  are 
v  are employed to compute 

w . Then the entire process is 

restarted and repeated till convergence after having computed 

the contribution by the normal stress and strain, which are 

disregarded by the FSDT model used in the PFEA phase, as 

described hereafter. 

  

iv) The results of the PFEA provides an approximate 

expression of the transverse normal stress z~ . In details, this 

stress can be recovered integrating in z the third local 

differential equilibrium equation (40), obtained deriving the 

spline representation of the transverse shear stresses in x and y. 

Then, using the 3D stress–strain relation, an approximate 

expression of the transverse normal strain z
~

 is computed. 

The contribution by the normal stress and strain are then 

substituted into the energy balance and used for computing the 

corrective displacements as described above. 

 

v) The updating procedure previously described is carried out 

disregarding the adaptive contributions to displacements given 

by the hierarchic terms, and then these contributions are added 

and computed as outlined hereafter. After the computation in 

sequence of 
u ,

v , 
w , x ,

y , z~  and z
~

, a sub-process 

is started which enforce the local equilibrium equations (40) at 

selected points across the thickness choosing a suitable 

subdivision scheme. The number of subdivision may be 

refined across the thickness in the regions where a higher order 

representation is required; however numerical tests showed 

that this refinement is unnecessary for undamaged laminates 

and sandwiches.  

 
vi) The previous updating operations are repeated till 

convergence after incorporation of the hierarchic terms. The 

entire process which starts with the computation of x  and 

y
 
is repeated using the last correction as the entry solution 

for the next iteration, and the magnitude of corrective 

displacements as a measure of errors. 

E. Solution methodology 

As customarily, the Principle of Virtual work or the 

Rayleigh-Ritz method allow to obtain the partial differential 

governing equations of the present model. Their expression are 

rather lengthy, therefore they are here omitted for sake of 

brevity. Their solution is found through the Fourier series 

method assuming the displacement fields as: 
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By solving the set of algebraic equations obtained through 

the substitution into the governing differential equations, it is 

possible to get the unknown amplitudes A mn to E mn. Yang and 

Pang [27] also used this method, dividing the SLJ into three 

zones two of which being outside the overlap and the other 

being the overlap itself, but also many other researchers 

employed this method for solving problems with non-classical, 

intricate boundary conditions. Obviously, the expansion order 

chosen to truncate Eqs. (43) to (47) determines the 

computational effort. It is worthwhile to remark that that in 

two-dimensional problems Eqs. (44) and (46) are neglected 

and the solution does not vary in y. The applications taken 

from literature show that convergent results can be obtained 

using at least a hundred of terms, so processing time and 

memory occupation dimension are much larger than those 

required for solving problems with simple loading schemes 

and conventional boundary conditions. 

The comparisons with analytical and finite element solutions 

by other researchers will show that the present model can 

obtain quite accurate results even using single component 

expansions, at least for the sample cases available in the 

literature, with clear advantages by the viewpoint of 

computational costs. In these cases, the displacements are 

represented as follows: 
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The three unknown amplitudes
uA , 

wA , 
xA


 are 

determined, e.g. through minimization of the potential energy, 

solving a system of just three algebraic equations in three 

unknowns. It is underlined that, according to the reference 

articles used for comparisons, the variation in the y direction is 

neglected. 

 

III. NUMERICAL APPLICATIONS AND DISCUSSION 

The capabilities of the present model were already proven in 

Refs. [28] and [29], where applications to laminates and 

sandwiches were presented keeping fixed the in-plane 

representation. Here the aim is to verify whether the 

displacement-based structural model, the displacement fields 

and the solution approach explained above can be efficiently 

employed for the analysis of adhesively bonded joints.  

To this purpose, sample cases of SLJ and DLJ taken from 

the literature are analysed using the present model. 

Aiming at assessing the capability of the present analytical 

model to treat general boundary conditions, which is a 

requirement of primary importance at the edges of the overlap, 

the analysis of a plate with clamped edges is premised to the 

analysis of joints. While in order to assess the accuracy and the 

efficiency of the present model in predicting the distribution of 

out-of-plane stresses across the thickness of the adhesive film, 

the analysis of a piezoactuated beam made of an aluminium 

substrate, a bonding film and a piezoactuator is also premised.  

All the computational times provided in the following 

sections are obtained performing the analyses on a laptop 

computer with dual-core CPU 2.20 GHz, 64 bit operating 

system and 4 GB RAM. 

A.  Plate with clamped edges  

Customarily, the researchers employ benchmark solutions 

for simply supported laminates and sandwiches to assess the 

accuracy of their plate theories and finite element 

formulations, not considering clamped or free edges. This 

choice prevents from verifying whether the behaviour of the 

models with mid-plane displacements and shear rotations as 

functional d.o.f., like the present model, can be poor. In fact, 

this kind of models is not always capable to enforce at the 

clamped edge a non-vanishing transverse shear with 

displacements and shear rotations that vanish. Aiming at 

verifying the capability of the present model to deal with 

general boundary conditions, here the square plate analysed by 

Vel and Batra in Ref. [31] is considered. 

The plate, characterized by a length to thickness ratio (Lx/h) 

of 5, is simply supported on two opposite edges, clamped on 

the other two and it is undergoing a bi-sinusoidal normal load 

with intensity p0  on the upper face, whereas the bottom one is 

traction free. The material constituting the plate has the 

following mechanical properties: EL/ET=25; GLT/ET=0.5; 

GTT/ET=0.2; υLT=0.25, while the stacking sequence is 

[0°/90°/0°]. The present model carries out the analysis 

considering the following in-plane representation of the d.o.f.: 
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As far as the through-the-thickness representation is 

concerned, the adaptive model employs three computational 

layers, while the points where the equilibrium condition (40) is 

enforced are [-0.43h; -0.22h; -0.14h; 0; 0.09h; 0.23h; 0.44h].  

Vel and Batra [31] exactly solved the governing equations 

using a three-dimensional generalization of the Eshelby-Stroh 

formalism that determines an infinite system of equations in 

infinite unknowns. Using the boundary conditions at the edges 

and the continuity conditions at the interfaces, they defined 

constants in the general solution, which were determined by 

the Fourier series method. Truncations of the set of infinite 

equations introduce errors that decrease by increasing the 

number of the terms in the series. 

Table 1 reports the through-the-thickness variations of the 

transverse shear stress and of the transverse displacement 

predicted by the present model and by Vel and Batra [31] with 

250 terms in the series. Please note that, the results in Table I 

named ‘Present M, N=200’ are obtained considering 200 terms 

in Eqs. (51) – (55), while the ones named ‘Present M, N=1’ 

are computed considering just a single component in the series 

expansion, i.e. M=N=1. 

The results of Table I are normalized as follows according to 

[31]: 
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From the results of Table I, it could be seen that the 

through-the-thickness variation of solutions predicted by the 

present model is in good agreement with the reference results 

even when just a one terms representation is considered, thus 

reducing to the minimum the computational burden. This 

achievement is reached thanks to the a priori fulfilment of the 

stress and displacement boundary conditions and of the 

interfacial stress contact conditions, obtained with the 

computation of closed form expressions for the coefficients of 

displacements. The evaluation of these coefficients, which is 

required just once at a time, takes about a minute, while the 

solution of the governing equations takes four minutes with 

M=N=200 and 1.3 s with M=N=1. So, it could be noticed the 

capability of the model of being accurate with a low expansion 

order, which gives a considerable practical advantage when 

repeated computations are required. 

B. Piezoelectrically actuated beam 

As a further assessment of the model, its capability to 

predict the stress across the thickness of the adhesive is tested. 

To this purpose, a three layered cantilever beam made of an 

underlying aluminium beam substructure, an adhesive film and 

a piezoactuator bonded on the upper face is considered. The 

analysis of piezoactuated structure is a subject largely studied 

by the researchers, as shown by Refs. [32] - Error! Reference 

source not found.. Here the case considered by Robbins and 

Reddy [32] is analysed. Similarly to what happens for bonded 

joints, close to the free edge of the beam the transverse normal 

and shear stresses reach a very large peak nearly in the 

adhesive layer. As a consequence of these interlaminar stress 

concentrations, the adhesive layer may progressively fail till to 

complete debonding of the piezoactuator. Robbins and Reddy 

studied this case employing finite elements deriving from a 

displacement-based layerwise theory and their result showed 

that unwanted dangerous stress concentrations occur at the free 

edge, thus increasing the possibility of a debonding of the 

piezoactuator in service. 

We choose to consider this sample case because its stress 

field is similar to those of bonded joints and also because 

Robbins and Reddy presented the stress distributions across 

the thickness in the most critical regions. Thus it is possible to 

verify the accuracy of the present model not just considering 

the in-plane stress distributions. In fact, for what concerns the 

analysis of joints, generally the results across the thickness are 

not provided by the researchers, because the analyses are 

carried out postulating simplifying assumptions, such as a 

constant transverse shear stress across the thickness of the 

adhesive layer. The main goal here is to investigate the 

effectiveness of the present model at the light of the localized 

effects due to the piezoactuator control layers on the through-

the-thickness stress distribution across the adhesive layer.  

The materials constituting the beam have the following 

mechanical properties: aluminium E= 69 GPa, G=27.5 GPa, 

υ=0.25; adhesive: E= 6.9 GPa, G=2.5 GPa, υ=0.4; 

piezoactuator: E1= 69 GPa, E3= 48 GPa, G=21 GPa, υ13= 0.25, 

υ13= 0.175. The beam is 152 mm long, the aluminium substrate 

is 15.2 mm thick, while the thicknesses of the adhesive layer 

and of the piezoactuator are respectively 0.254 mm and 1.52 

mm. The only acting loads are the self-equilibrating loads 

induced by the piezoactuator. A bending deformation is 

provided by applying an actuation strain of 0.001 to the 

piezoelectric layer via an applied electric field. 

Table II shows the through-the thickness distribution of 

membrane, transverse shear and transverse normal stresses 

close to the free edge, while Table III reports the in-plane 

variation of the stress field near the top of the aluminium 

substrate (z= 6.61 mm) and in the piezoelectric layer (z= 

6.6245 mm). According to [32], the stress distributions are 

normalized as follows:  
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Where the subscripts alum, ad, piezo and tot indicate the 

cross sectional area and the elastic moduli of the substrate 

structure, of the adhesive and of the piezoactuator layer, 

respectively. 

In this case, the adaptive model carries out the analysis 

considering 6 subdivisions across the thickness of the 

aluminium substrate, 5 subdivisions the adhesive layer and 9 in 

the piezoactuator layer. In order to improve accuracy, these 

computational layers are refined near the adhesive layer and 

gradually enlarged as the distance to this layer increases.  

Hermite’s cubic polynomials are used for all the functional 

d.o.f. far from the tip and the root of the beam: 

)()()()( 44332211 xHCxHCxHCxHC 
 (58) 

Instead, at the tip and the root of the beam the trial functions 

are chosen as follows in order to fulfil the boundary 

conditions, i.e. w(0)= w,x (0)= 0 and 0 dzz xx :  
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Where i=1. Please note that the in-plane displacement and 

the shear rotation are obtained from (59) deriving in x and 

considering 
uA and xA


as amplitudes.  

The boundary conditions at the points where the 

representation is changed and the condition 0 dzz xz  

are imposed as outlined in Section 2.3.2.  

Also in this case, the results by the present model are in 

accordance with the reference ones and the boundary 

conditions are correctly fulfilled. As far as the computational 

burden is concerned, even if many subdivisions are considered 

across the thickness and several are used in the spanwise 

direction, just 150 s are required to perform the analysis. 

Accordingly, the results for this sample case demonstrate that 

the present model can couple accuracy and efficiency. 

C. Adhesively bonded joints 

In order to test the capability of the present model to deal 

with joints, the sample cases by Radice and Vinson [7], 

Andruet et al. [8], Diaz [10] and Nemes and Lachaud [12] are 

considered. 

1) Case A: single-lap joint with aluminum adherents 

The first case takes into consideration the single lap joint 

analysed by Radice and Vinson [7]. The joint is clamped at the 

left edge and simply supported at the right one, where an axial 

load with intensity 40 kN/mm is applied. The adherents are 

made of aluminium (E=70 GPa, υ=0.33), while the adhesive is 

an epoxy resin, here, according to [7], treated as an isotropic 

material (E=4.82 GPa, υ=0.40). The adherents are 50.8 mm 

long and 1.62 mm thick, while the length of the adhesive is 

12.7 mm and its thickness is 0.25 mm. According to [7], the 

variation of solutions in the transverse direction y is not 

considered. 

In Figure 2 two results by the present model are reported: 

those named ‘Present M,N=1’ are computed using as trial 

functions in the overlap those of Eqs. (48)- (50) with a single 

component, while the results named ‘Present M,N=30’ are 

obtained using in the overlap the trial functions of Eqs. (43) - 

(47) with 30 components. In the former case, the problem is 

reduced to solving a system of 3 equations in 3 unknowns, 

therefore the analysis is consistently speeded-up as it takes 

only 1.5 s. Instead, with the latter approach the solving system 

is a 90 x 90 and the computational time is 80 s. In both cases, 

aiming at fulfilling the boundary conditions, the trial functions 

of Eqs. (51) – (55) are chosen in the lower adherent, while 

those of Eqs. (43) – (47) are employed into the upper adherent. 

Irrespectively of the trial functions adopted, the adaptive 

model adopts a third order expansion of the in-plane 

displacement and a fourth order expansion of the transverse 

displacement. The equilibrium condition (40) for computing 

the hierarchic terms of the adaptive model is imposed at the 

following through-the-thickness points [-1.2; -0.67; -0.063; -

0.015; 0.063; 0.67; 1.2]. 

In order to assess the effectiveness of SEUPT in analysing 

joints, in Figure 2 are also reported the results computed with 

this procedure (i.e. the curves named ‘SEUPT’). Specifically 

the PFEA is carried out using a model considering 1000 d.o.f. 

and then these preliminary results are post-processed with 

SEUPT. As shown by the numerical results, also this latter 

approach provides accurate results, while the computational 

time required for the application of the procedure is 96 s. 

It could be noticed that the comparison with the reference 

case confirms the accuracy of the model even when just a 

single component in the series expansion of the trial functions 

is considered.  

2) Case B: single-lap joint with aluminum adherents 

We now focus our attention on the single lap joint analysed 

by Andruet et al. [8] with aluminium adherents 60 mm long 

and 1.6 mm thick. The adhesive is an epoxy resin, its thickness 

is 0.1 mm and the overlap length is 20 mm. The joint is 

clamped at left edge and simply supported at the right one. The 

mechanical properties of the adherents are E=68.3 GPa, υ=0.3, 

those of the adhesive are E=2.5 GPa, υ=0.3.  

In Figure 3 two results obtained with the adaptive model are 

reported: that named as BC1 is computed imposing the 

constraints prescribed by the theory of elasticity, that named 

BC2 is instead obtained imposing the same value as Andruet et 

al. [8] of the shear stress at the edge of the joint.  

In both cases, the through-the-thickness variation of the in-

plane displacement is of third order and that of the transverse 

displacement is of fourth order, while the trial functions are 
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those of Eqs. (51) – (55) for the adherents and those of Eqs. 

(48) - (50) for the overlap. Irrespectively of the constraints 

imposed, the analysis takes 1.5 s. As far as the computation of 

the higher order terms is concerned, the equilibrium condition 

(40) is imposed at the following through-the-thickness points 

[-1; -0.5; -0.04; +0.0125; 0.04; 0.52; 1.1].  

Also in this case the present model provides results as 

accurate as those of the reference case, even if the 

computational effort is very low.  

3) Case C: single-lap joint with composite adherents 

As a further assessment we now consider the single lap joint 

studied by Diaz et al. [10]. The joint has laminated 

graphite/epoxy (XAS/914C) adherents, whose mechanical 

properties are: Ex= 138 GPa, Ey= Ez= 9.4 GPa, υxy= υxz= υyz= 

0.32, Gxy= Gxz= Gyz= 6.70 GPa. The stacking sequence is [0° / 

45° / -45° / 0°]2s, the length of the adherents is 114.3 mm, their 

thickness is 2 mm. The adhesive, according to [10] here 

treated as isotropic material, is epoxy resin REDUX 308A, 

with the following mechanical properties: E= 3 GPa, υ= 0.31, 

G= 1.15 GPa. The adhesive layer is 0.13 mm thick and the 

overlap length ol is 25.4 mm. The right edge of the joint is 

clamped, while the left one has all the displacements and 

rotations restricted except the in-plane displacement along x. A 

traction load with intensity P=4448 N is applied at the end 

cross section of the lower adherent. 

Please note that in Figure 4 the stresses (y axes) are reported 

normalized with respect to the applied load P, while the in-

plane coordinate (x axis) is normalized with respect to the 

overlap length ol. 

As in Case B, in Figure 4 are reported two results obtained 

with the adaptive model. Those referred as BC1 are achieved 

imposing the constraints of Eqs. (1) – (3), instead, those 

named as BC2 are computed imposing the same value as Diaz 

et al. [10] of the shear stress at the edge of the overlap.  

Irrespectively of the constraints imposed, the trial functions 

are those of Eqs. (51) – (55) for the adherents and those of 

Eqs. (48) - (50) in the overlap, and, as previously done, the 

through-the-thickness representation of the in-plane 

displacement is computed using a third order expansion, that 

of the transverse displacement is obtained with a fourth order 

expansion. Within the adherents four computational layers are 

considered, while a single computational layer is considered in 

the overlap. With this choice it is possible to improve 

accuracy, as the equilibrium condition (40) is imposed in an 

increased number of points. Specifically this condition is 

enforced at the following through-the-thickness points [-1.965; 

-1.665; -1.465; -1.365; -1.165; -0.965; -0.815; -0.665; -0.465; 

-0.365; -0.265; -0.05; 0.01; 0.055; 0.265; 0.365; 0.465; 0.665; 

0.815; 0.965; 1.165; 1.365; 1.465; 1.665; 1.965]. As far as the 

computational burden is concerned, the analysis takes 1.7 s 

irrespectively of the boundary conditions imposed, while the 

results by Diaz et al. [10] takes hours for running on a 

computer with two quad-core CPU 2.3 GHz and 32 GB RAM. 

Similarly to what done for Case A, in order to prove the 

qualities of SEUPT when analyzing laminates, in Figure 4 the 

results obtained applying this procedure are reported and 

named ‘SEUPT’. The results of the PFEA are obtained with a 

model that has 1500 d.o.f. 

Also in this case the comparison with the reference results 

proves that the present model can get accurate results, keeping 

very low the computational effort, even when the adherents are 

made of orthotropic materials. For what concerns SEUPT, also 

in this case, this technique gives precise results requiring a 

computational time of 115 s. 

4) Case D: double-lap with aluminium adherents  

We now focus our attention on the analysis of double lap 

joints. While SLJ undergo a large transverse displacement, the 

symmetry of DLJ hinders this effect. We now consider the 

joint with aluminium 2024 T3 adherents analysed by Nemes 

and Lachaud [12]. The adhesive is epoxy resin REDUX 312/5 

(E=27 GPa, G=1 GPa, υ=0.35) and it is 0.1 mm thick. The 

thickness of the outer adherents is 2 mm, that of the inner 

adherent is 4 mm and the overlap length is 50 mm. The lower 

and the upper adherents are clamped, while a pressure load 

with intensity 1 N/mm is applied to the inner adherent. 

As in Case A, in Figure 5 two results by the present model 

are reported: those named ‘Present M,N=1’, and those named 

‘Present M,N=30’. In the former case the analysis is carried 

out using in the overlap the trial functions of Eqs. (48)- (50) 

with a single component, thus the problem is reduced to the 

solution of a system of 3 equations in 3 unknowns. In the latter 

case the computations are performed using in the overlap the 

trial functions of Eqs. (43) - (47) with 30 components. As a 

consequence the solving system is a 90 x 90. Of course, the 

first approach is dramatically more efficient than the second 

one, as it takes only 1.65 s instead of 90 s. Irrespectively of the 

trial functions chosen within the overlap, the in-plane 

representation adopted in the outer adherents is that of Eqs. 

(51) – (55), while in the inner adherent the trial functions are 

those of Eqs. (43) – (47). As far as the through-the-thickness 

representation is concerned, in both cases a third order 

expansion of the in-plane displacement and a fourth order 

expansion of the transverse displacement are adopted, while a 

single computational layer is considered in the adherents as 

well as in the adhesive. It could be noticed that the equilibrium 

condition (40) for computing the hierarchic terms of the 

adaptive model are imposed at the following through-the-

thickness points [-2.5; -1.5; -1.07; -1.04; -1.03; -0.7; -0.1; 0.7; 

1.03; 1.04; 1.07; 1.5; 2.5].  

It can be seen that also in case of DLJ the approach 

presented in this paper still provides accurate results with low 

computational effort.  

As general remarks about the numerical results presented, it 

is underlined that the model here proposed always obtains 

accurate results with a low computational effort. Even if just 

two-dimensional results were presented, since the variation in 

the transverse direction y was neglected by the analytical 

models used as reference cases the numerical results of Section 

3.1 and of Ref. [28] and [29] prove that the present model can 

correctly perform full three-dimensional analyses. As outlined 

in Refs.[28] and [29], the adaptive model was developed in 

order to treat thick structures, while the sample cases here 
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considered refer to joints with adherents characterized by a 

high length to thickness ratio, because only such results are 

available in the literature. Accordingly its inherent numerical 

efficiency will be more evident analysing thick bonded joints 

with abruptly changing material properties of the constituent 

layers and distinctly different properties of the adherents, since 

these structures need extremely refined finite element models. 

It is reminded that in such cases the customary assumptions of 

simplified models can be no longer valid, due to intricate out-

of-plane stress fields. 

 

IV. CONCLUDING REMARKS 

A zig-zag model with variable kinematics was refined for 

the analysis of adhesively bonded joints with laminated 

adherents, thus allowing treating laminates and bonded joints 

under a unified approach. Its three-dimensional, piecewise 

displacement field a priori fulfils the stress boundary 

conditions at the upper and lower faces of the structure and the 

out-of-plane stress contact conditions at the interfaces of 

adjacent layers. 

Aiming at better modelling the variation of solutions and at 

satisfying the stress boundary conditions of the joint, the in-

plane representation can change from the adherents to the 

overlap. While thanks to a variable through-the-thickness 

representation, the model can accurately describe the stress 

field of structures with abruptly changing materials’ properties. 

Despite a variable representation can be obtained, no increase 

of the memory storage dimension and no consistent increase of 

the processing time are required, because the model has five 

functional d.o.f., like classical plate models. Using symbolic 

calculus, closed form expressions of high-order terms and 

continuity functions are obtained enforcing the continuity of 

out-of-plane stresses at the interfaces of adjacent layers and the 

boundary conditions prescribed by the elasticity theory. The 

structural model here proposed can be also adopted to develop 

finite elements with different representations but with 

compatible stresses. However, its direct implementation would 

be unpractical, since derivatives of the displacements should 

be chosen as nodal d.o.f. To avoid this drawback, in the 

present paper it was suggested the implementation of the strain 

energy updating technique (SEUPT [30]), which is a post 

processing procedure able to improve the accuracy of standard 

finite elements up to that of refined structural model. 

As a preliminary assessment, a plate with clamped edges 

was analysed, in order to show the capability of the present 

analytical model to treat general boundary conditions, like at 

the edges of the overlap. A piezoactuated beam made of an 

aluminium substrate, a bonding film and a piezoactuator was 

also considered in order to assess whether the present model 

can capture the out-of-plane stress fields across the thickness 

of the adhesive. For both benchmark cases, accurate results 

were obtained, as shown by the comparison with the reference 

three-dimensional results in the literature, in few seconds. 

Applications to single and double-lap joints taken from the 

literature were presented, in order to assess the potentialities of 

the model. These sample cases, which have isotropic or 

laminated adherents, were solved through Fourier’s series 

expansion, but accurate results were obtained even using just 

one component in all the examined cases. In two cases, also 

the results computed applying SEUPT were presented, 

showing that this procedure represents a valid alternative to the 

direct application of the model. 

The numerical results showed that the current particularized 

version of the model with also in-plane variable kinematics can 

accurately and efficiently treat bonded joints with laminated 

adherents. In fact, for all the examined cases, accurate results 

were obtained in few seconds performing the analyses on a 

laptop computer.  
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TABLE I 

COMPARISON BETWEEN THE THROUGH-THE-THICKNESS DISTRIBUTIONS OF SHEAR STRESS AND TRANSVERSE DISPLACEMENT BY THE PRESENT MODEL AND BY VEL 

AND BATRA [31]. 

  z/h -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 

xz  

Present M, N=1 0.000 2.610 3.230 2.641 2.110 2.096 2.100 2.270 3.343 2.733 0.000 

Present M, N=200 0.000 2.608 3.227 2.643 2.114 2.094 2.099 2.668 3.340 2.735 0.000 

Ref. [31] 0.000 2.609 3.227 2.643 2.113 2.093 2.100 2.668 3.340 2.734 0.000 

w  

Present M, N=1 1.151 1.157 1.159 1.165 1.170 1.181 1.188 1.199 1.210 1.215 1.224 

Present M, N=200 1.153 1.158 1.161 1.168 1172 1.180 1.188 1.197 1.207 1.217 1.228 

Ref. [31] 1.152 1.158 1.162 1.167 1.173 1.180 1.188 1.198 1.208 1.218 1.227 

 

 

 

 

TABLE II  

COMPARISON BETWEEN THE THROUGH-THE-THICKNESS DISTRIBUTIONS OF IN-PLANE. SHEAR AND TRANSVERSE NORMAL STRESSES BY THE PRESENT MODEL AND 

BY ROBBINS AND REDDY [32]. 

 

  z/h -0.50 -0.30 -0.10 0.16 0.25 0.33 0.37 0.38 0.39 0.45 0.50 

xx   
Present 0.0000 0.0006 -0.0010 0.0006 0.0088 0.0334 0.1943 0.3536 0.1664 -0.0552 0.0000 

Ref. [32] 0.0000 0.0006 -0.0010 0.0006 0.0087 0.0340 0.1950 0.3530 0.1666 -0.0551 0.0000 

xz  
Present 0.0000 -0.0191 -0.0404 -0.0487 -0.0404 0.0416 0.3799 0.4110 0.4701 0.0564 0.0000 

Ref. [32] 0.0000 -0.0190 -0.0408 -0.4930 -0.0400 0.0418 0.3798 0.4111 0.4699 0.0559 0.0000 

zz  
Present 0.0000 -0.0257 -0.0930 -0.2128 -0.2424 -0.1866 -0.1554 -0.1193 -0.0897 -0.0585 0.0000 

Ref. [32] 0.0000 -0.0276 -0.0907 -0.2129 -0.2425 -0.1863 -0.1545 -0.1192 -0.0897 -0.0590 0.0000 
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TABLE III. 

COMPARISON BETWEEN THE IN-PLANE DISTRIBUTIONS OF IN-PLANE. SHEAR AND TRANSVERSE NORMAL STRESSES BY THE PRESENT MODEL AND BY ROBBINS AND 

REDDY [32]. 

    x 0.840 0.900 0.910 0.925 0.946 0.958 0.973 0.985 0.995 1.000 

xx  

z= 6.61 mm 
Present 0.2921 0.2921 0.2943 0.2985 0.3113 0.3197 0.3261 0.2921 0.2178 0.0000 

Ref.[32] 0.2921 0.2921 0.2944 0.2990 0.3115 0.3201 0.3563 0.2921 0.2178 0.0000 

 
  

          

z= 6.6245 mm 
Present 0.0292 0.0306 0.0319 0.0325 0.0403 0.0444 0.0556 0.0500 0.0319 0.0000 

Ref.[32] 0.0292 0.0306 0.0320 0.0326 0.0400 0.0445 0.0556 0.0501 0.0318 0.0000 

xz  

z= 6.61 mm 
Present 0.0000 0.0179 0.0285 0.0540 0.1219 0.1644 0.2514 0.3257 0.3448 0.0000 

Ref.[32] 0.0000 0.0180 0.0285 0.0545 0.1220 0.1650 0.2517 0.3260 0.3450 0.0000 

 
  

          

z= 6.6245 mm 
Present 0.0000 0.0321 0.0422 0.0740 0.1401 0.1861 0.2879 0.3381 0.4320 0.0000 

Ref.[32] 0.0000 0.0320 0.0420 0.0740 0.1400 0.1860 0.2880 0.3380 0.4320 0.0000 

zz  

z= 6.61 mm 
Present 0.0000 0.0045 0.0045 0.0065 0.0146 0.0247 0.0348 0.0045 -0.0803 -0.5000 

Ref.[32] 0.0000 0.0044 0.0045 0.0660 0.0148 0.0250 0.0345 0.0046 -0.0800 -0.5000 

 
  

          

z= 6.6245 mm 
Present 0.0000 0.0020 0.0041 0.0060 0.0100 0.0140 0.0280 0.0156 -0.0795 -0.1806 

Ref.[32] 0.0000 0.0020 0.0040 0.0060 0.0099 0.0139 0.0278 0.0159 -0.0794 -0.1806 
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Fig. 1. Geometry and system of reference for analysis of single lap  and double lap joints. 

 

 
 

 

 
 

 
Fig. 2. Span-wise distribution of a) shear stress and b) peel stress at the interface between adhesive and adherent by Radice and Vinson [7], by the present model 

using different trial functions and using SEUPT. 
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Fig. 3. Span-wise distribution of a) shear stress and b) peel stress by Andruet et al. [8] and by the present model considering different boundary conditions. 
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Fig. 4. Span-wise distribution of a) shear stress and b) peel stress by Diaz et al. [10] and by the present model using different boundary conditions and using 

SEUPT. 
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Fig. 5. Span-wise distribution of a) shear stress and b) peel stress by Nemes and Lachaud [12] and by the present model using different trial functions.  
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