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Abstract— Potential-flow solutions for rotor induced 

flow by the He method give good convergence on the disk 

but can provide only a crude approximation off of the 

disk.  The Morillo-Duffy formulation can give all three 

components off the disk, but the results converge poorly 

on the disk.  Furthermore, Morillo-Duffy solutions 

converge very slowly for the velocity downstream in the 

limit as wake skew angle approaches 90º (edgewise flow).  

In this work, new variables––called the Nowak-He 

variables––are introduced that provide both the He 

velocity and the Morillo-Duffy velocity from a single set 

of states.  In addition, an approximate downstream 

velocity field is obtained from the adjoint theorem that 

gives the exact downstream velocity as skew angle 

approaches 90º.  The blending of these three velocity 

fields is shown to give robust and accurate convergence 

to the potential-flow equations at all flight conditions. 

Keywords-potential flow; downstream velocity; 

Nowak-He solution; Morillo-Duffy solution 

LIST OF SYMBOLS 

[ ]A : transform matrix 

m

ja : Morillo-Duffy variables 

m

n :  Nowak-He variables 

m : harmonic numbers 

, :n j  polynomial numbers 

( )m

nP  :  normalized Legendre function of first 
kind 

( )m

nQ i : normalized Legendre function of second 
kind 

R :  rotor radius, m 

 :  non-dimensional coordinate along free-
stream line, positive below disk 

s :  distance from the point of velocity 
computation along a streamline to the 

rotor disk at 0r , 0  

0s :  x-distance downstream in edgewise flow, 
m 

t :  time, sec 

V :  free-stream velocity, m/sec 

MDV :  normal induced velocity based on 
Morillo-Duffy variable 

NCV :  normal induced velocity based on 
Nowak-He variable 

FV :  final induced velocity 

DSV :  downstream limiting velocity 

 :  skew angle 

0

1 :  elliptical pressure coefficient 

 :  distance along x-axis from ( 0s ) to the 

point at which the velocity is desired, 

0( )x s     

, ,x y z :  non-dimensional rotor disk coordinates, 
coordinate divided by R 

, ,   :  ellipsoidal coordinates 

0 0 0, ,   :  the ellipsoidal coordinates of the 
intersection point of rotor plane and the 
free-stream line 

 :  reduced frequency, /R V    

 :  rotor speed, rad/sec 

!!m : double factorial, m(m-2)(m-4)…  

0x  non-dimensional location of streamline 
intersection with disk, distance/R 

I. BACKGROUND 

The incompressible potential-flow equations serve 
well to predict the rotor wake during powered flight.   
Traditional vortex-lattice and vortex-panel methods do 
an excellent job of solving these equations, but they 
are often too inefficient for real-time flight simulation.  
Therefore, a class of finite-state inflow models has 
been developed based on application of the Galerkin 
method in order to obtain a set of low-order, state-
variable equations.  Peters and He [1] developed a 
potential-flow theory for the vertical component of 
flow at the rotor disk.  They validated the model 
against wind-tunnel data, as in [2, 3].  The Peters-He 
model is widely used in many production codes 
including FLIGHTLAB (Advanced Rotorcraft 
Technology), COPTER (Bell Helicopter), RCAS (U. 
S. Government) and ONERA-DFVLR (European 
Community), etc. 

In 1996, Wen-Ming Cao [4] made an attempt to 
compute the flow off of the rotor disk by a similar 
model.  His work demonstrated that there must be a 

DOI: 10.5176/ 2382-5758_1.2.8 



second set of wake states for flow off the rotor to be 
calculated, but he was unable to determine them.  
Morillo showed that these states could be found 
rigorously, as in [5, 6].  Morillo wrote a generalized 
velocity potential and expanded that potential in terms 
of Legendre functions.  By including both odd and 
even functions––and treating them as velocity 
potentials––Morillo was able to use a Galerkin 
approach to obtain a closed-form set of equations for 
all components of velocity above and on the plane of 
the rotor disk.  All matrices are in closed form, and 
mass sources are also allowed. 

The Morillo model gives excellent agreement with 
closed-form solutions for step response and frequency 
response, but convergence is slow due to ill-
conditioned matrices.  In 2005, Michael Ke Yu [7] 
demonstrated that the ill-conditioning was due to a 
lack of certain singular expansion functions.  Hsieh [8] 
derived closed-form expressions for these singular 
functions; and Garcia-Duffy [9] incorporated them 
into a complete dynamic inflow model for all 
components of flow in the upper hemisphere.  A 
summary of this inflow development can be found in 
[10]. 

Recently, Fei [11, 12] extended Morillo’s model 
and found a rigorous solution for the flow below the 
plane of the rotor, which allows application of finite-
state methods within the rotor wake––giving the entire 
velocity field at all points.  The ability to find the flow 
field everywhere impacts not only rotor flight 
simulation but also wind energy applications, as in 
[13].  It is also interesting to note that the three-
dimensional inflow model has an analog in two-
dimensional flow and can be applied to airfoil theory, 
as in [14].  This has also led to applications to the 
locomotion of organisms by the above finite-state 
methodology, as in [15].  The cost of this transaction 
is that one must also compute the adjoint of the 
velocity (i.e., the co-states of the flow).  Once that is 
done, the complete flow below the plane follows 
directly.  The co-state method insures that the flow 
below the disk converges at least as well as the flow 
above the disk.   The adjoint methodology has been 
validated for both step response and frequency 
response throughout the range of skew angles.  

The major drawbacks of the Finite-State inflow of 
Fei have been: 1.) It is not as well-conditioned as the 
He model for inflow on the disk; and 2.) It diverges 
downstream as the skew angle approaches 90º 
(edgewise flow).  The reason for the first drawback is 
that the inflow model of He was derived in two 
separate forms.  One form uses the natural Legendre 

functions ( )m

nP   for the velocity expansion.  The 

second form uses a transform to write the velocities in 

terms of the functions ( ) /m

nP    which are 

polynomials in r.  Because the second version (with 
the polynomials) converges much faster than the first, 
subsequent applications have used this second form.  
However, because the second form uses functions that 
are not the natural Laplacean solutions, the Fei model 

could not utilize them. It rather uses the poorly-

converging ( )m

nP  . 

In this paper, we show that one can compute both 
the He second-form variables (which we call the 
Nowak-He variables) and the Morillo-Duffy variables 
from a single set of unified inflow states.  The Nowak-
He and Morillo-Duffy solutions are computed through 
a change of variable. Those solutions can then be 
blended to obtain the well-behaved He solution on the 
disk and the accurate Morillo-Duffy solution away 
from the disk.  The blending is taken such that one 
need not calculate Morillo-Duffy velocity either on the 
disk or close to the disk edge, where it is ill-
conditioned, Nowak [16].   

For the second deficiency, the major issue is that, 
as the flow becomes edgewise, the trailing wake 
moves closer and closer to the downstream rotor 
plane––so that the induced flow downstream does not 
decay.  As a result, the Legendre Functions (which all 
decay) are unable to converge to the velocity 
downstream.  To remove this deficiency, the adjoint 
theorem has been extended to the case of perfectly 
edgewise flow to show that the flow downstream can 
be computed from the velocity and adjoint velocity 
upstream.   

To compute the downstream velocity from the 
adjoint velocity requires the computation of no 
additional states––only the use of existing information.  
That solution can then be blended with the previously-
blended Nowak-He and Morillo-Duffy variables.  The 
blending is defined such that, for perfectly-edgewise 
flow, we use only the limiting downstream velocity 
(which is exact); and, for axial flow, we use only the 
true blended Nowak-He/Morillo-Duffy solution, 
which has no converg-ence problems away from 
edgewise flow.  Finally, the flow below the disk is 
found in the normal way from the completely blended 
velocity and adjoint velocity above the disk.  This 
paper is based on work presented earlier in [17]. 

 

II. EXTENDED BLENDING METHOD 

For the extended blending method, the He (which 

is also called Nowak-He) and the Morillo-Duffy 

solution are combined.  The Morillo-Duffy variables 

are transformed from Nowak variables via the 

transform matrix [A].  The equation is expressed as 
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where { }m

ja  and { }m

n  are Morillo-Duffy variables 

and Nowak-He variable, respectively.  



Then the normal induced velocity above the rotor 
disk ( 0z  ) based on Morillo-Duffy variable and 

Nowak-He variables can be obtained by 
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The adjoint velocity based on Morillo-Duffy 
method and Nowak-He is given as follows as well. 
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where { }m

n  and { }m

n  are Morillo-Duffy adjoint 

variables and Nowak-He adjoint variables, respect-
tively.  For the special case ( 0  ), we have 

{ } { } and { } { }m m m m

n j n na                    (8) 

Since the Nowak-He solution behaves well on the 
the disk and the Morillo-Duffy solution is more 
accurate away from the disk, the blending function 
which is given in (9-10) is designed to transition 
quickly to Morillo-Duffy.  
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One need not to calculate Morillo-Duffy velocity 
either on the disk or close to the disk edge ( 0.01  ) 

where it is ill-conditioned.  

As the flow becomes edgewise, the induced flow 
downstream does not decay due to the trailing wake 
effect.  Therefore, the adjoint theorem has been 
extended to the case of perfectly edgewise flow.   

Let 0s  be the x-distance downstream in edgewise 

flow at which the flow is converged by the blended 
method.  We take this distance to be on a sphere of 

radius one or else to be zero if 2 2 1y z  .  

2 2 2 2
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2 2
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Let x be a point (further downstream than 0s ) at 

which the velocity is desired.  Let the distance along 

the x-axis from ( 0s ) to that point at which the 

velocity is desired be called 0( )x s    .  It follows 

that the distance along the streamline going through 

0s  to the point on the streamline that is closest to x 

(i.e., perpendicular) is then given by sin( )  .  We 

then define the time delay for adjoint theorem to be 

sin( )  .      

Thus, in the plane of the disk, 0z   and1 1y   , 

one should place 0s  at the trailing edge of the disk 

(region ①); 0 0s   for 0z   and 1y   (region ②) 

which is illustrated in Fig. 1.  The thick solid curve 
denotes the trailing edge of the rotor disk.   



 

Figure Illustration of downstream in edgewise flow at the rotor disk. 

Then the downstream velocity ( 0x   and 
2 2 2 0x y z   ) can be found from the adjoint 

theorem: 
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Based on (9) and (14), one can obtain the 

downstream final velocity FV  from BLV  and DSV  

which is shown in (16).  For both on the disk and 

upstream ( 0x s  ), F BLV V .  Similarly, the adjoint 
*

FV  is given in (17) through a combination of (10) and 

(15). 
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where 
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(19) 

 

Figure 2 3-D perspective of co-states 

Fig. 2 shows the 3-D perspective of the co-state 
method.  For the velocity at point a (below the disk), 
one should compute the velocity at point b, which is 
the intersection point of the free streamline and the 
rotor plane first, then add the adjoint velocity at point 
c, which is centrosymmetric to point b in the disk plane, 
minus the adjoint velocity at point d, which is 
centrosymmetric to point a above the rotor disk.  s is 
the distance from point a along the streamline to the 

rotor disk (point b) at 0r , 0 . 
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The above derivation is for the z component of 
velocity, which is perpendicular to the rotor disk.  For 
the x and y components, there is no counterpart in the 
Nowak-He model.  Thus, the blended velocities of (9-

10) are replaced by MDV  for both the x and y 

components: 
* *,BL MD BL MDV V V V  .  It follows that 

DSV  is then formed the same way for xV  and yV  as it 

is for zV  in (14-15).  However, because the x and y 

derivatives of the velocity potential have the opposite 
even-function and odd-function behavior as does the z 
derivative (upwind and downwind), the signs of the 

adjoint velocities in (14-15) are opposite for xV  and 

yV  from those in (14-15) for zV  downstream.  The 

blending for xV  and yV  according to (16-19) then 

follows with the exception that 0( , )f s   should be 

multiplied by  
5/ 3

1 cos( )  for xV  and yV .  For 

velocity below the disk, there is no diference in the 
blending algorithm for x and y components as 
compared to z component.  In this paper, we only 

consider zV . 

 

III. RESULTS 

With the blending method discussed above, some 
typical results (four skew angles, two frequencies, and 
various cuts through the flow field) are presented to 
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show the degree of accuracy of the solution.  Results 
are for the z-component (normal component) of 
velocity.  Some results have 6 harmonic for the odd 
terms and 4 harmonics for the even terms (25 states).  
Other results have 12 harmonics for the odd terms and 
8 harmonics for even terms (74 states).  For example: 

m-odd = 12, m-even = 8 for  = 0 

m-odd = 12, m-even = 8 for  = 4 and 0 45     

m-odd = 6, m-even = 4 for  = 4 and 45 90     

The rotor is given an elliptical pressure distribution.  
The axial coordinate is z, with z > 0 downstream.  The 
fore-aft coordinate is x, with x < 0 being downstream.  

The lateral coordinate is y.  The results for  = 0 

(constant loading) and  = 4 (frequency = 4 /V R ) 

are illustrated in Figs. 3-22.  The open circles on the 
plots are the exact solution for each case, which can be 
found from a convolution integral from upstream 
infinity along a streamline down to that particular 
point.  The solid lines are the new, blended solutions.  
For comparison, each figure shows the various 
velocities that are blended together to obtain the final 
solution. The dashed-dot blue line is the Morillo-
Duffy solution.  The long-dash green curve is the 
velocity from the Nowak-He variables. 

Figs. 3-6 give induced velocity at the rotor disk (y 

= 0.0 and z = 0.0), for  = 0, and there are no imaginary 
parts in the solution.  The skew angle is varied from 0o 
to 85o.  Figs. 7 and 8 show the results for two cuts 
along the y axis (y = 0.5 and 1.26).  Since the flow is 
symmetric about the y axis, only the induced velocity 
for 0y   needs to be computed. Fig. 9 presents a y-

traverse.  Results above the disk (z = –0.4) are directly 
above the disk and are plotted versus x in Fig. 10.  In 
Fig. 11, results below the disk (z = +0.4) are plotted 
from the center of the skewed wake versus x0, which 
is the x location on the rotor disk through which a 
streamline would pass.  Thus, x0 = 0 is the streamline 
going through the rotor center.  

Fig. 3, which shows flow on the disk, shows axial 
flow so that the Morillo and He variables work equally 
well on the disk, and the “downstream” correction has 
no physical meaning (and is not blended).  As skew 
angle is increased (Figs. 4-6), one can see the increase 
of downstream flow.  The Nowak change of variable 
becomes more and more accurate (with respect to 
Duffy-Morillo) as skew angle increases, and the 
velocity begins to approach the “downstream” 
solution (which becomes the exact solution as skew 
angle approaches 90º).  Notice that the blending 
function does an excellent job of combining the three 
solutions together to match the exact solution (from a 
convolution integral). 

Fig. 8 is an x-plot located at 0.26 radii laterally 
from the edge of the disk.  Although this is very close 
to the trailing vortex that comes off of the disk edge, 
the velocity is still quite good.  Fig. 9 sheds further 
insight on this correlation by giving a plot of velocity 
versus lateral coordinate y off the edge of the disk.  

The point y=1.26 marks the location of the cross-plot 
in Fig. 8.  One can see that the peak due to the trailing 
vortex is well-captured with the appropriate decay off 
of the disk. 

Figs. 10-11 give velocity 0.4 radii above the disk 
and 0.4 radii below the disk, respectively.  The same 
good convergence at the disk is seen above the disk.  
Here, the He variables have less effect; and it is 
basically a blending of downstream and Morgan 
variables.  Below the disk, the improvement of the 
downstream blending at the disk is magnified.  This is 
because the flow below the disk (in the adjoint method) 
is sensitive to the flow at the disk.  Fig. 12, which is a 
traverse above the disk, illustrates that this above disk 
correlation is good not simply at z = –0.4 but continues 
at all locations. 

Ten similar cases for  = 4 are demonstrated in 
Figs. 13-22.  The real part and imaginary part of the 
induced velocity are given in the separate plots.  The 
results obtained through the blended method match the 
exact solution perfectly both upstream and 
downstream, above the rotor disk and below the disk. 

The same trends as were seen for  = 0 in Figs. 3-

12 are repeated at  = 4 in Figs. 13-22.  In this second 
set of figures, there are both real and imaginary plots 
(for the in-phase and out-of-phase velocities); but the 
same trends persist as were found for the steady case.  
Figs. 16, 17, and 21 clearly show the oscillations in the 
induced flow behind the disk.  This is due to the fact 
that vorticity is being shed into the wake at a frequency 
of 4.0.  Thus, there are oscillations in the velocity 
downstream that decay slowly (and which cease to 
decay at all as the skew angle approaches 90º).  Notice 
that neither the Duffy-Morillo variables nor the 
Nowak-He variables can predict such oscillations, but 
the adjoint velocity gives the precise oscillations that 
are needed.  After blending, the solution is virtually 
exact at all skew angles.  This accuracy naturally 
persists downstream from the rotor disk, Fig. 21. 

 

Figure 3 Real part of axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  

for ω = 0, χ = 0o.  (m-odd = 12, m-even = 8) 
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Figure 4 Real part of axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  

for ω = 0, χ = 30o.  (m-odd = 12, m-even = 8) 

 

Figure 5 Real part of axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  

for ω = 0, χ = 60o. (m-odd = 12, m-even = 8) 

 

 

 

Figure 6 Real part of axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  

for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 

 

Figure 7 Real part of axial velocity Vz for y = 0.5, z = 0.0 with 
0

1  

for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 

 

Figure 8 Real part of axial velocity Vz for y = 1.26, z = 0.0 with 
0

1  

for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 

 

 

 

Figure 9 Real part of axial velocity Vz for x = 0.0, z = 0.0 with 
0

1  

for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 

 

Figure 10 Real part of axial velocity Vz for y = 0.0, z = -0.4 with 
0

1  

for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 

 

Figure 11 Real part of axial velocity Vz for y = 0.0, z = 0.4 with 
0

1  

for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 
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Figure 12 Real part of axial velocity Vz for x = -0.25, y = 0.0 with 
0

1  for ω = 0, χ = 85o. (m-odd = 12, m-even = 8) 

(a)  

(b)  

Figure 13 Axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  for ω = 4, χ 

= 0o: (a) real part and (b) imaginary part. (m-odd = 12, m-even = 8) 
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Figure 14 Axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  for ω = 4, χ 

= 30o: (a) real part and (b) imaginary part. (m-odd = 12, m-even = 8) 

(a)  

(b)  

Figure 15 Axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  for ω = 4, χ 

= 60o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 16 Axial velocity Vz for y = 0.0, z = 0.0 with 
0

1  for ω = 4, χ 

= 85o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 17 Axial velocity Vz for y = 0.5, z = 0.0 with 
0

1  for ω = 4, χ 

= 85o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 4) 

(a)  

(b)  

Figure 18 Axial velocity Vz for y = 1.26, z = 0.0 with 
0

1  for ω = 4, 

χ = 85o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 

4) 

(a)  

(b)  

Figure 19 Axial velocity Vz for x = 0.0, z = 0.0 with 
0

1  for ω = 4, χ 

= 85o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 20 Axial velocity Vz for y = 0.0, z = -0.4 with 
0

1  for ω = 4, 

χ = 85o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 

4) 

(a)  

(b)  

Figure 21 Axial velocity Vz for y = 0.0, z = 0.4 with 
0

1  for ω = 4, χ 

= 85o: (a) real part and (b) imaginary part. (m-odd = 6, m-even = 4) 

(a)  

(b)  

Figure 22 Axial velocity Vz for x = -0.25, y = 0.0 with 
0

1  for ω = 4, χ = 85o: (a) real part and (b) imaginary 

part. (m-odd = 6, m-even = 4) 

 

IV. CONCLUSIONS 

A new methodology is introduced to obtain rotor 
induced velocity either on the rotor disk or off the disk.  
To obtain good convergence at all skew angles, the 
Morillo-Duffy and Nowak-He velocity fields are 
blended with a closed-form downstream velocity 
(which is exact for perfectly edge-wise flow).  The 
induced velocity below the rotor disk can also be 
obtained via this extended blending method.  No new 
flow states are required for this method.  Only normal 
and adjoint sates are utilized.  Comparisons with the 
exact solution for steady and unsteady flow verify the 
effectiveness of the new approach. 
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