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Abstract— In this paper, a new model for predicting the yield of 

greenhouse sweet peppers (Capsicum annuum L.) is presented. 

The model can provide long-term prediction up to 7 weeks in 

advance with the same accuracy it can predict yield one week in 

advance. It uses both past and expected environmental readings 

as well as physiological data as input to a specially designed 

artificial neural network. The model was tested using 4 years of 

data that was obtained from commercial pepper growers. Short-

term prediction accuracy (one week) is consistent with other 

predictive models in the literature for sweet peppers. This 

validates our long-term results. 

Keywords- Bell peppers, crop models, greenhouse, long-term 

yield prediction, neural networks 

 

I.  INTRODUCTION 

 

Accurate prediction of greenhouse fruit yield has been of 

significant interest in the last several years. Some of these 

efforts are based on a deeper explanation of a plant’s 

physiology such as TOMSIM and TOMGRO [1]. These are 

called explanatory models. Others, are descriptive models 

which do not specify the internal mechanisms within a plant 

and rely instead on external parameters, such as radiation 

levels, temperature, or past yield in simulating yield patterns 

thus implicitly capturing hidden interactions between the 

different parameters [2]–[6]. Such parameters are readily 

available for growers, or can be easily obtained, making 

descriptive models more attractive for commercial deployment. 

These models generally consist of input parameters, a 

predictive model, and an output that represents yield for a given 

week or the expected overall yield for the season. They can be 

based on simple approaches such as linear regression analysis 

[5] or more complex approaches such as neural networks [7]–

[9], neuro-fuzzy networks [6], and time series [4]. The selection 

of parameters and the type of predictive algorithm used impacts 

prediction accuracy and how far ahead predictions can be 

made. 

Since different crops have different challenges and 

physiological properties, the crop under investigation and its 

environment can also affect prediction accuracy. Sweet 

Peppers (Capsicum annuum L.), in particular, are challenging 

because of their flushing property (Heuvelink and Marcelis, 

2004). Flushing means that pepper crops alternate between 

high and low yields throughout the season making predictions 

more challenging. While most pepper yield prediction models 

report decent accuracy for up to two weeks in advance, 

predictions further ahead have proven to be difficult. Lin et al. 

experimented with yield prediction from 1- 4 weeks ahead.  

They used radiation levels, current and past yields, temperature 

and week number to predict the yield. They reported that the 

models’ accuracy was high (30%) when predicting the weekly 

yield up to two weeks in advance, but that the prediction quality 

degraded significantly at the four week mark. Sauviller et al. 

[5] suggested a simple linear regression model relating the 

average 24 hour greenhouse temperature to the number of days 

to maturity for new fruit sets. They used this model to predict 

the number of fruits that are harvest ready in a given week. 

While they reported high accuracy (7%-14%), their model is 

iterative where the accuracy of prediction increases as the 

prediction time is shortened. The model also does not predict 

yield but fruit numbers. However, there is a significant 

variation between fruit numbers and fruit weights.  

This paper presents a model that predicts weekly yield 4 

and 7 weeks in advance with the same accuracy as predicting 

weekly yield 1 week in advance. To our knowledge, no other 

model can provide such accuracy on a long-term basis using 

commercial greenhouse settings. The paper is organized as 

follows: Section 2 describes the parameters used and the data 

preparation methods. Section 3 outlines the neural network 

model, as well as the training and testing methodology. Finally, 

in section 4 we present results and discussion. 

 

II. METHODOLOGY 

 

A. Data source  

Data was collected from a commercial pepper greenhouse 

grower in the Chatham area, Ontario, Canada. The data covers 

four years 2007, 2008, 2010 and 2011. Sweet pepper cultivars 

grown varied from year to year. In 2007, the cultivars were 

‘Fascinato’ and ‘Red Glory’; in 2008 and 2011 it was 

‘Besalga’, while in 2010 the cultivar grown was ‘Viper’. 

Planting dates were 6 December 2006, 3 December 2007, 5 
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December 2009 and 14 and 15 December 2010 for the growing 

seasons 2007, 2008, 2010, and 2011, respectively. Plants were 

grown in a hydroponics system in rockwool slabs. The first 

fruits appeared in January for the growing seasons 2007, 2010, 

and 2011, and at the end of December for 2008. The harvest 

period started in March for all growing seasons and ended in 

November. 

In total, there were 143 data points over all 4 years 

excluding rows from early and late season weeks with zero 

weekly yield. The data consists of automatically collected daily 

environmental readings both inside and outside the greenhouse 

as well as physiological readings related to specific zones 

within the greenhouse as follows: 

 Environmental readings included radiation level, 

outside temperature, average 24 hour temperature, CO2 

levels, day and night daily humidity readings inside the 

greenhouse, irrigation-related readings including the 

number of irrigations and amount of water absorbed by 

the plant (in L/m2).  

 Physiological readings related to 10 sample plants 

from each of 4 areas in the greenhouse were also 

collected daily and included: plant length (in cm), plant 

growth per week, number of flowers, number of new 

fruit sets (1cm or larger), total fruit load (includes 

unripe fruits), and the number of fruits harvested daily 

from the plant. In 2010 there were 10 sample plants in 

each of 6 areas within the facility instead of the usual 

four. 

B. Data representation and preprocessing 

Most of the previous efforts using artificial neural networks 

(ANN) for yield prediction, formulated the problem as a 

regression problem predicting yield values as output. Yet 

farmers are not interested in a very precise model but rather an 

approximate yield prediction, and would accept a reasonable 

error in the predicted value. As such, the problem was 

formulated in this paper as a classification problem. Rather than 

predicting an exact yield value, the model predicts a range of 

values within which the yield is expected to fall. This approach 

also entails grouping similar values together into a single yield 

category thus increasing the number of training examples 

available to the network for each value.  

A brief algorithm for creating yield categories is shown in 

Figure 1. The process starts by setting a minimum yield value 

and selecting an accuracy value a between 0 and 1. This 

accuracy should reflect the error that farmers find acceptable in 

the predicted yield value. An accuracy value of 0.3, for 

example, means that the predicted yield can vary ±30% from 

the predicted value. Given the minimum yield, the accuracy a, 

and the maximum possible yield value, yield values are then 

divided into sub-ranges [ l , m )  so that each range has a 

minimum value m and a maximum value l where: 

 
(𝑙−𝑚)

𝑙
≤ 𝑎 (1)

For example, for an accuracy of 0.3, a minimum yield value 

of 0.11 and a maximum yield value of 1, the range of values 

between 0.11 and 1 is divided into the ranges: [0.11, 0.143), 

[0.143, 0.186), [0.186, 0.242), etc. Each range is then 

considered a category with its category center at (l+m)/2. Once 

categories are created, yield values in the data are mapped into 

the appropriate yield categories. The new yield categories are 

then used in training and testing the ANN. Instead of predicting 

exact yields, the output of the ANN in this case is a set of values 

each representing the likelihood of the expected yield to belong 

to each of the given categories (yield ranges). The category c 

with the highest likelihood is selected as the predicted yield 

category.  

In the final step, each category c is represented with its 

center value: (lc+mc)/2 where lc and mc are the largest and 

smallest values within category c. In the rest of the paper we 

will refer to the center of the predicted category as predicted 

yield and the center of the target yield’s category as simply the 

target yield. 

To make the task of building effective neural networks 

more efficient, the environmental variables utilized were 

reduced to include only those commonly found in yield 

prediction ANN models such as those used by Lin et al.[7], 

Ehret et al.[9] and Sauviller et al.[5].  In particular, the 

following environmental variables were included:  

 average radiation levels,  

 24 hour temperature,  

 day humidity,  

 average CO2 levels.  

Some physiological readings were also used including: 

 the average plant absorption level,  

 Select the min yield Min, max. yield Max, and accuracy 
a 

 Divide yield values between Min and Max into ranges 

[𝑙, 𝑚) so that  
(𝑙−𝑚)

𝑙
≤ 𝑎  

 Map each yield value  in the data to the appropriate yield 

category 𝑐 with range [𝑙𝑐 , 𝑚𝑐) so that lc ≤ v < mc 

 The yield values are used in training and testing the 
ANNs. For each prediction 𝑖 made by the ANN,  

o select the category 𝑐𝑖 with the highest likelihood as 
the ANN’s yield prediction for case 𝑖. 

o represent the ANN’s prediction for case 𝑖  by the 

center of the selected category 𝑐𝑖. 

Figure 1.  A general algorithm for replacing yield values by 

approximate values given a desired accuracy a, a minimum yield value 

Min, and a maximum yield value Max. 
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 plant growth,  

 the number of new fruit sets. 

 the calendar week number as an indicator of plant age.  

In addition to the raw environmental and physiological data 

collected, a set of environmental reading averages was also 

developed to be used in some of the predictive models as will 

be explained later.  

C. Neural network modeling 

The Matlab Neural Network Toolbox was used to build and 

test the neural networks used in this paper. Input data was first 

preprocessed using principle component analysis to reduce 

dimensionality thus enhancing generalization, especially given 

the limited data sets available. Training and testing were 

conducted using a 4-fold cross-validation process where the 

testing set was selected as an entire year and the remaining 

three years were used in training. After four training/testing 

cycles, the average error over all 4 years was used to report the 

results.   

A multi-layer perceptron ANN (MLP) was used in all 

learning. The network was training with Matlab 

implementation of the scaled conjugate gradient back- 

propagation method (MLP-BP). Both topology and threshold 

for stopping the training were varied during experimentation. 

The performance of a MLP-BP is impacted significantly by 

its topology. The topology should not have a large number of 

weights relative to the number of training patterns, otherwise 

over-fitting will occur and the network will have poor results 

on the testing patterns. On the other hand, a small topology may 

not have the computational complexity to learn the target 

function, which leads to poor results. Since the actual 

complexity of the learning task is unknown, a large number of 

topologies were tested to find those that provide the best results. 

Networks with two to eight hidden neurons were built forming 

seven different topologies. With each topology, we 

experimented with six different thresholds to stop the training 

automatically. The threshold was based on Mean Squared Error 

over each training iteration (which included the entire training 

dataset). For each threshold we also ran 10 different models, 

each with a different random selection of initial weights. In 

total 1680 different neural network models were tested for each 

experiment described below.   

D. ANN Model Selection 

As explained above, the neural networks predict yield as 

centers of yield categories. Yields that were recorded by 

farmers were also converted into centers of yield categories. 

The error in prediction was then measured by comparing the 

predicted yield, i.e. the center of the predicted yield’s category, 

to the target yield, i.e. the category center of the recorded 

yield’s category.  

For each run two values were used to measure the model’s 

effectiveness: the correlation coefficient r and the weekly 

prediction error WPE. The WPE was defined as the ratio of the 

difference between the predicted yield and the target yield to 

the target yield: 

 𝑊𝑃𝐸 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑦𝑖𝑒𝑙𝑑−𝑡𝑎𝑟𝑔𝑒𝑡𝑦𝑖𝑒𝑙𝑑

𝑡𝑎𝑟𝑔𝑒𝑡𝑦𝑖𝑒𝑙𝑑
 (2)

To select the best ANN models, the two measures, r and 

WPE were combined in one function called the combined error 

(ce):  

 𝑐𝑒𝑚 = (1 − 𝐴𝑉𝐺(𝑊𝑃𝐸𝑚)) + 𝑟𝑚 (3)

where Avg(WPEm) is the average weekly prediction error 

over the whole growing season for the model built in run m, 

and rm is the correlation coefficient for the same model m. The 

best model was defined as the model with the highest ce value. 

Each of the four cross-validations was represented by the 

best model from among all its threshold-run combinations. 

Given the four best ANNs for each topology t, one per cross 

validation ci, the relative prediction error AvgPEt per topology 

t was defined as the average WPE over the four selected 

models. Similarly, the correlation coefficient rt per topology 

was calculated as the average rm over all four models. 

 

III. RESULTS AND DISCUSSION 

A. Experiment Overview 

Several models were tested. Each model represented one 

case of input parameters used or a different prediction period. 

Table 1 shows all the cases modeled and the parameters used 

in each case. 

We explored using new input parameters not used before 

such as the expected (future) environmental readings for a 

given time of the year, and how prediction accuracy would be 

affected by the length of time between the target week for 

which the yield was being predicted and the current week from 

which the prediction was being made. Table 1 lists all the cases 

considered in our experiments. The base case (case 1) predicted 

next week’s yield given the weekly average 24 hour radiation 

level, 24 hour temperature, plant water absorption rate, CO2 

levels, average day humidity, and the average plant growth per 

sample plant with and without the calendar week number. Next, 

the number of fruit sets that formed six weeks earlier was added 

to test the effect of this knowledge on short-term yield 

prediction (case 2). Following that the average environmental 

data from the past six weeks was added to test the effect on 

yield prediction (case 3). Cases 4, 5, and 6 looked at the change 

in yield prediction errors when long-term prediction came into 

play as shown Table 1. These three cases examined the 

effectiveness of long-term prediction under two varying 

conditions: the length of time between the current week and the 

target week for which prediction was sought, and the use of 

expected environmental data given the time of the year.  

B. Results 

Table 1 shows the best prediction errors AvgPEt and those 

with the highest correlation coefficient values for each case in 

the experiments, as well as the topologies that achieved these 

values. In what follows we look more closely at the result of 

each case as it compares to the other cases. 
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1) One to two week prediction accuracy 

Case 1a was the base case and it predicted next week’s yield 

using the current week’s environmental readings as shown in 

Table 1. The best prediction error AvgPEt in this case was 0.43 

which was among the highest (worst) for all cases. Varying the 

parameters used for short-term prediction did not make 

significant improvements in the average prediction accuracy as 

can be seen in cases 1a, 1b, 2a, 2b, 3a and 3b which added a 

variety of parameter combinations including the calendar week 

number, the number of new fruit sets, and the average past 

environmental readings. The prediction errors for these cases 

ranged between 0.4 and 0.45 which is very close to case 1a’s. 

 

2) Four week prediction accuracy 

As the prediction term increased and other variables were 

utilized, prediction errors decreased. Cases 5a and 6a predicted 

yield four weeks in advance. Both cases had better prediction 

errors than those for cases 1a, 1b, 2a, 2b, 3a and 3b whose 

models predicted next week’s yield. In particular, cases 3a and 

5a both used average past environmental readings and the 

number of new fruit sets observed. But case 3a predicted next 

week’s yield while case 5a predicted yield four weeks in 

advance. Yet, at 0.32, case 5a’s prediction error was 25% lower 

than that of case 3a. Interestingly, increasing the prediction 

term in this case from one week for case 3a to four weeks in 

case 5a and decreasing the number of weeks used for 

environmental readings from 7 weeks for case 3a to only four 

weeks in case 5a did not jeopardize prediction quality. This 

might indicate that not all past weeks are equal in their strength 

TABLE I.  THE DIFFERENT CASES EXAMINED FOR YIELD PREDICTION
a 

 
Experiment Variables used 

Lowest 

AvgPEt 
Topology Highest rt Topology 

1a 
Predicting next week’s 

yield 

Current week’s environmental readings. 0.43 

(0.06) 

8 0.41 

(0.1) 

5 

1b 
Same variables as case 1a. For case 1b we also use the current 

calendar week number. 

0.4 

(0.07) 

3 0.47 

(0.12) 

8 

2a 
Effect of using new 
fruit set numbers in 

predicting next week’s 

yield 

Same as in case 1a with the number of new fruit sets that 
appeared six weeks ago. 

0.45 
(0.04) 

6 0.46 
(0.17) 

4 

2b 
Same variables as case 2a. For case 2b we also use the current 

calendar week number. 

0.44 

(0.03) 

5 and 6 0.5 

(0.2) 

7 

3a 
Effect of using past 

average environmental 
readings on yield 

prediction 

Average readings for the current week and the past six weeks. 

Number of new fruit sets 6 weeks ago 

0.43 

(0.03) 

6 0.48 

(0.09) 

8 

3b 
Same variables as case 3a. For case 3b we also use the current 
calendar week number. 

0.4 
(0.05) 

7 0.4 
(0.08) 

6 and 7 

4a 

Effectiveness of yield 
prediction seven weeks 

early with expected 

environmental readings 

Target week number. 
Number of new fruit sets for this week. 

Expected average environmental readings for the next seven 

weeks. 

0.28 
(0.03) 

2 0.53 
(0.12) 

7 

4b 

Current calendar week number since transplanting. 

Number of new fruit sets for this week. 

Expected average environmental readings for the next seven 
weeks. 

0.42 

(0.04) 

2 and 7 0.56 

(0.09) 

7 

5a 

Yield four weeks from 

now 

Target calendar week number. 

Number of new fruit sets that formed three weeks ago. 
Average environmental readings for the past four weeks. 

0.32 

(0.04) 

2 0.47 

(0.04) 

8 

6a 

Yield four weeks from 

now with expected 

environmental readings 

Same as in case 5a above. 

Expected environmental readings for the next four weeks. 

0.38 

(0.07) 

6 0.46 

(0.05) 

6 
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Figure 1: The predicted yield values versus the actual recorded yield for a 

case 1b model which predicts next week’s yield. 
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as indicators of a plant’s response in terms of yield production.  

This is consistent with Lin et al. [7] observation that some 

environmental factors have more influence when they are 

closer to the prediction week and that this influence lessens as 

we go further back from the prediction week. 

Adding the expected environmental readings slightly 

worsened the best prediction value in case 6a when compared 

to case 5a but this value remained better than those observed 

for shorter term predictions. 

3) Seven week prediction accuracy 

When past environmental readings were removed 

altogether in case 4a and only expected environmental readings 

and the number of new fruit sets were used to make yield 

predictions seven weeks in advance, the prediction error 

reached its best value of 0.28, a 35% improvement over the 

base case.  

Figures 2 and 3 plot the predicted yield versus the actual 

yield recorded by the farmers for one of the ANN models built 

for cases 4a and 6a, respectively. The models correctly follow 

the yield fluctuation most of the weeks. 

4) Impact of parameters: use of week number and new 

fruit set numbers 

In almost all cases, using the current calendar week number 

did not improve prediction accuracy significantly (cases 1b, 2b, 

3b, and 4b compared to cases 1a, 2a, 3a, and 4a, respectively), 

and, in case 4b, reduced the best prediction error value to 0.42 

from 0.28. Using new fruit set numbers by itself also did not 

improve prediction accuracy (cases 1a and 1b compared to 

cases 2a and 2b). 

C. Comparison to Previous Work 

As Lin et al. [7] notes, comparing the effectiveness of yield 

prediction models to other work is difficult due to different 

approaches in measuring yield and estimating errors. For 

example, the prediction error, as measured in this work, 

reached 28% for yield predictions seven weeks early when 

using the expected environmental readings. This is lower than 

the best reported error of 30% for predicting next week’s yield 

in (Lin et al. [7]). However, while we select a best topology as 

represented by the average over four best models, one per cross 

validation, Lin et al. select the best model based on the ANN 

architecture, the correlation coefficient values, and the root 

mean square error. We also categorize yields prior to creating 

the ANNs while Lin et al. [7] and other researchers use exact 

yield values in their ANN models. 

 

Sauviller et al. [5] reported an error of 7-13% on external 

data. However, they measured their yield by the number of 

fruits per m2 based on thirty-two sample plants. It is unclear 

how this approach would generalize to commercial 

greenhouses with thousands of plants and how prediction 

accuracy is affected when we are further away from the 

prediction week. Also, the number of fruits does not necessarily 

account for the weight of the total yield. Fruit weight and size 

has been shown to be affected by environmental and 

physiological factors other than temperature such as light and 

the plants’ fruit load [11]. This introduces potential variation in 

the actual yield weight for the same fruit number. Furthermore, 

the degree to which a specific factor affects yield may also be 

influenced by other factors such as the effect of light in higher 

temperatures [11]. This adds new variables affecting the total 

yield but not accounted for by the temperature-based model.  

 

IV. CONCLUSION 

Yield prediction is a challenging problem due to the variety 

of possible variables affecting yield and the irregular yield 

pattern of greenhouse peppers. In this paper, the problem was 

approached as a classification problem rather than a regression 

problem and used expected future values to predict yield up to 

seven weeks in advance. Our results indicate that long-term (+7 

weeks) prediction can be achieved with the same or better 

accuracy than short-term (+1 week) prediction.  These results 
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Figure 2: The predicted yield values versus the actual recorded yield for a 

case 4a model which predicts yield seven weeks in advance.  
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were achieved using commercial data from four years.  We plan 

in the future to field test this model on a large scale inviting 

multiple farmers to submit data to a specially designed website.  
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